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Abstract

Recent advances in single-cell technologies have provided unprecedented opportunities

to study genome structure, gene expression, and cellular organization in complex tissues.

However, the cell type-specific connections between genome structure and genome func-

tion, as well as the molecular mechanisms underlying cellular spatial organization, remain

poorly understood. In particular, modeling the spatial patterns of biomolecules and cells

and cohesively integrating genome architecture and transcriptome data for single-cell anal-

ysis of complex tissues is a major challenge. In this Ph.D. dissertation, I develop a series

of new algorithms based on representation learning and probabilistic graphical models for

modeling multimodal spatial omics. First, I develop a probabilistic, latent variable mod-

eling framework to model cell identity using single-cell spatial transcriptomic data. Sec-

ond, I create a tensor decomposition framework to jointly infer cell embeddings and cell

type-specific 3D genome features based on single-cell 3D genome mapping data. Third, I

introduce an integrative analysis framework for a new single-cell co-assay of 3D genome

and transcriptome. Fourth, I develop a transformer-based machine learning model to un-

derstand the interplay between DNA sequence, 3D genome structure, and gene expression

in a cell type-specific manner. These new machine-learning models are expected to unveil

cell-to-cell variability and the spatiotemporal dynamics of 3D genome structures and their

connections with gene expression in various biological contexts. Together, the computa-

tional methods developed in this dissertation have the potential to shed new light on the

spatial organization of the genome and cells and their functional implications in health and

disease.
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Chapter 1

Introduction

1.1 Background and related work

The cell-type-specific connections between genome structure and function, and their in-

fluence on cellular phenotypes remain mostly unclear, especially in complex tissue, such

as the brain [1]. In addition, the compositions of different cell types in mammalian tis-

sues, such as the brain, remain poorly understood, due to the complex interplay between

the intrinsic multi-scale epigenome and cell-to-cell interaction that collectively contribute

to the cell identity [2–4]. The advent of high-throughput whole-genome mapping methods

for the three-dimensional (3D) genome organization such as Hi-C [5] has revealed distinct

features of chromatin folding in various scales within the cell nucleus, including A/B com-

partments [5], subcompartments [6, 7], topologically associating domains (TADs) [8, 9],

and chromatin loops [6]. These multiscale 3D genome features collectively contribute to

vital genome functions such as transcription and DNA replication [10–13]. However, the

variation of 3D genome features and their functional significance in single cells remain

poorly understood [1, 14]. The recent developments of single-cell Hi-C (scHi-C) technolo-

gies have enabled us to probe chromatin interactions at single-cell resolution, from a few

cells [15–18] to thousands of cells from complex tissues [19–21]. These new technolo-

gies and datasets have the promise to reveal the multi-scale connections between genome

structure and function for a wide range of biological contexts [14].

The emerging spatial transcriptomics technologies based on multiplexed imaging and
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sequencing [22–33] are able to reveal spatial information of gene expression of up to tens

of thousands of genes in individual cells in situ within the tissue context. These technolo-

gies and datasets enabled us to study cell-cell communications mediated by ligand-receptor

pairs [27], gap junction [31], and estrogen-based paracrine signaling [26]. At a higher

level, spatial transcriptome sheds light on critical biological processes, such as the spa-

tiotemporal developmental trajectory in the brain [29], cancer cell state transitions [34],

heterogeneous immune responses of T cells to cancer [35], and amyloid deposition in

Alzheimer’s Disease [36],

It remains a challenge to develop computational methods for drawing a holistic picture

of the intra-cellular multi-scale epigenome and inter-cellular spatial organization of com-

plex tissues [14, 37, 38]. Current methods for the analysis of single-cell Hi-C datasets, such

as HiCRep/MDS [39], scHiCluster [40], LDA [17], and [41], have limited ability to infer

informative and interpretable embedding spaces that can delineate rare cell types in com-

plex tissues, due to the high dimensionality and high sparsity of scHi-C data. These exist-

ing methods also cannot directly reveal 3D genome structures related to cell-type-specific

genome functions, or be scaled up to large-scale datasets with limited computational re-

sources. Computational methods have been developed to use spatial transcriptome data to

identify spatial domains and cell types in tissues [42–46], to explore the spatial variance of

genes [47–50], to align scRNA-seq with spatial transcriptome data [51–54], and to model

the inter-cellular spatial dependencies [38, 43, 44, 46]. The existing methods typically do

not integrate the modeling of the spatial variability of genes with their contribution to cell

identity, and the learned cell embeddings are generally hard to interpret. Therefore, there

is an urgent need for robust, interpretable methods that can jointly model both the spatial

organization and multi-scale intra-cellular epigenome for complex tissues, which is of vital

importance to draw a holistic picture of living organisms and to shed light on health and

disease.

From an algorithmic view, the cell type-specific relation between genome structure and

function in complex tissue can be modeled by integration of multilinear models and prob-

2



abilistic graphical models. The latent representation of single cells and important patterns

in genome structure and function can be jointly modeled can inferred. The latent represen-

tation of single cells and the spatially variable features can be jointly captured by model

inference. The overall goal of my Ph.D. thesis is focused on addressing these challenges

by developing machine learning models for the study of multiple modalities at single-cell

resolution, even in the spatial context when available. Ultimately, we aim to provide novel

insights into the cell type-specific relation between genome structure and function in com-

plex tissue.

1.2 Structure of the thesis

This thesis begins with an introduction to the background (Chapter 1), then presents our

contributions to addressing critical challenges in this field (Chapter 2, 3, 4, and 5), and

finally summarizes our findings and future directions (Chapter 6). Fig. 1.1 illustrates the

structure of the thesis and the development and biological applications of computational

methods.

In Chapter 2, we develop a new latent representation learning method for the analysis

of spatial transcriptomic data that integrates gene expression and spatial patterns of cells in

complex tissues. Our method aims to reveal refined cell types, spatially variable metagenes,

and spatial patterns of biological processes. This chapter is based on the work:

• Benjamin Chidester, Tianming Zhou, Shahul Alam, and Jian Ma. “SPICEMIX en-

ables integrative single-cell spatial modeling of cell identity.” Nature Genetics (2023) [55].

In Chapter 3, we developed a new method for the analysis of single-cell Hi-C data based

on tensor decomposition. Our model aims to jointly infer cell embeddings and 3D genome

features that capture critical structural features of single-cell chromatin that are related to

genome functions. This chapter is based on the work:

• Ruochi Zhang, Tianming Zhou, and Jian Ma. “Ultrafast and interpretable single-cell

3D genome analysis with Fast-Higashi.” Cell Systems (2022) [56].
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In Chapter 4, we collaborated with Zhijun Duan from the University of Washington and

developed GAGE-seq for concurrent profiling of scHi-C and scRNA-seq. We also devel-

oped generic computational algorithms for integrating co-assayed single-cell technologies

with one shared modality. Our algorithm enabled the joint analysis of transcriptome, DNA

methylation, and 3D genome structure in mouse brain. Our algorithm also overlaid single-

cell 3D genome structure and the full transcriptome onto the spatial contexts from mouse

brains, revealing the intricate spatial patterns of transcriptome and 3D genome structure.

This chapter is based on the following work and the experimental details can be referred to

the published paper:

• Tianming Zhou, Ruochi Zhang, Deyong Jia, Raymond T. Doty, Adam D. Munday,

Daniel Gao, Li Xin, Janis L. Abkowitz, Zhijun Duan, and Jian Ma. “Concurrent

profiling of multiscale 3D genome organization and gene expression in single mam-

malian cells.” Nature Genetics (2024) [57].

In Chapter 5, we developed a transformer-based predictive model, called Hi-CFormer,

for understanding the intricate interplay of DNA sequence, 3D genome structure, and tran-

scriptome. Hi-CFormer predicts mRNA signals from DNA sequence and cell-type-specific

3D genome structure. We developed novel variants of the transformer layer and the atten-

tion layer in order to effectively learn information from 2D Hi-C contact maps. Evaluation

on a GAGE-seq dataset from mouse brain data [57] demonstrated the superior performance

of Hi-CFormer compared to sequence-only baselines. The interpretation of trained Hi-

CFormer revealed cell-type-specific interplay between DNA sequence, 3D genome struc-

ture, and transcriptome.

In the final chapter, we revisit these algorithms and the GAGE-seq technology and

discuss how they collectively deepen our understanding of the complex interplay between

3D genome structure, transcriptome, and spatial context. We also create blueprints for the

future of these directions.

4



Figure 1.1: Overview and structure of this thesis. The left column illustrates the multi-scale structures in complex tissues,
including the spatial arrangement of cells, cellular structures, and chromatin organizations. The middle column shows
the data representation used in this thesis. On the right are the algorithms with the association to the aspects of the
multi-scale structures.

1.3 Introduction to relevant biological technologies

1.3.1 scHi-C technology

New technologies have been developed to study 3D chromatin organization at single-cell

resolution in recent years [15, 16, 58–70]. In sequencing-based methods, interacting ge-

nomic loci are labeled in an unbiased manner, and their identities are then obtained by

sequencing. Most sequencing-based methods utilize the pairwise proximity ligation to

capture pairwise interactions between genomic loci, except scSPRITE [63] which tags loci

within one complex with the same barcode and thus is able to capture multi-way interac-

tions directly. Note that the sequencing-based methods cannot capture the exact spatial

positions of genomic loci, requiring computational tools to reconstruct 3D conformation

from contact maps. An exception is the IGS method [70], where a UMI (unique molecular

identifier) is tagged to each locus and sequenced in situ, allowing the identification of spa-

tial positions of genomic loci. In imaging-based methods, spatial positions of genomic loci

are visualized by fluorescent in situ hybridization (FISH). However, the imaging technolo-

gies are typically restricted to pre-selected loci. As a result, the resolution can be as high

as 5kb, but the coverage remains relatively low because only around a thousand loci can be

5



detected under the current barcoding schemes.

Computational methods play key roles in revealing multiple aspects of single-cell 3D

genomes based on scHi-C data. A typical set of analysis tasks includes data processing,

dimension reduction for identifying cell clusters with distinct 3D genome organization,

improving data quality, and various downstream analyses (see Fig. 1.2). As compared to

one-dimensional single-cell assays such as single-cell RNA-seq (scRNA-seq) and single-

cell ATAC-seq (scATAC-seq), scHi-C produces two-dimensional contact maps for each

cell, which is naturally much sparser and noisier even with similar sequencing depth. More

importantly, the contact map representation differs from the vector representation, making

it difficult to directly re-purpose the existing computational methods developed for scRNA-

seq and scATAC-seq. Chapter 3 and 4 are related to scHi-C.

1.3.2 Spatial transcriptome technology

Spatial transcriptome (ST) technologies combine genomic and spatial data to provide a

comprehensive understanding of gene expression patterns within their native tissue envi-

ronments. This integration is crucial for studying complex biological systems and diseases,

as it reveals not only what genes are active, but also where in the tissue these activities

occur. Spatial transcriptome technologies can be largely categorized into imaging-based

technologies and sequencing-based technologies.

Imaging-based technologies rely on microscopic imaging techniques to visualize RNA

molecules within tissue sections. The core method, known as single-molecule fluorescent

in situ hybridization (smFISH) [71], involves using fluorescent probes that bind to specific

RNA sequences, allowing for the visualization of individual RNA molecules at the sub-

cellular level. Advances in this area have led to the development of multiplexed versions

like seqFISH [27, 43] and MERFISH [72]. SeqFISH utilizes a barcode system where each

RNA molecule is labeled over multiple rounds of hybridization, enabling the simultaneous

detection of many different RNA species. MERFISH further improves on this by using a

combination of error-robust barcoding and successive imaging to enhance both the multi-

plexing capabilities and the accuracy of RNA detection.

6
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Figure 1.2: A typical workflow for scHi-C data analysis. For a scHi-C sequencing library, the sequencing reads are
demultiplexed based on the cellular barcodes, aligned to the reference genome, and binned into single-cell contact
maps. After removing low-quality cells, computational methods are used to reduce the dimensionality (i.e., embedding),
enhance the data quality (i.e., contact map imputation), and analyze the 3D genome structures. Based on the learned
embeddings and the imputed contact maps, downstream analysis such as characterizing multiscale 3D genome features
for single cells and clustering cells into distinct cellular states can be performed to reveal the heterogeneity and dynamics
of 3D genome organization.

Sequencing-based technologies integrate traditional RNA sequencing methods with

spatial resolution techniques. One common method involves the use of microdissection

tools to isolate specific tissue regions followed by RNA sequencing, which allows re-

searchers to associate gene expression profiles with their precise locations within the tissue.

More advanced technologies, such as Slide-seq [29, 33] and 10x Genomics’ Visium [73],

employ bead-based or array-based capture systems that retain spatial coordinates and facil-

itate high-throughput sequencing. These platforms can profile thousands of genes across

large tissue areas, providing a detailed spatial map of gene expression that is invaluable for

understanding tissue structure and function at the molecular level.

Both imaging and sequencing technologies in spatial transcriptomics are pivotal for ad-
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vancing our understanding of biological tissues, enabling detailed studies on development,

disease pathology, and gene expression dynamics. Chapter 2 and 4 are related to the spatial

transcriptome.

1.4 Introduction to relevant computational teqchniques

1.4.1 Unsupervised learning

Unsupervised learning is a branch of machine learning that focuses on identifying patterns

and structures from datasets without labeled outcomes. This method operates without guid-

ance, finding hidden structures in unlabeled data, which is particularly useful where the true

labels are unknown or hard to obtain.

In unsupervised learning, techniques such as clustering help group similar data points

together, revealing inherent groupings within the data [74, 75]. Dimensionality reduction

simplifies data by reducing its features to the most significant ones, maintaining the essence

while removing noise [76].

In computational biology, unsupervised learning is invaluable for deciphering complex

biological data. For example, it is employed in genomics to identify cell types from single-

cell gene expression data without prior knowledge [77]. It helps in understanding disease

mechanisms by clustering patients based on their genomic profiles, which can uncover

new biological insights or subtypes of diseases without predefined labels. Unsupervised

learning thereby acts as a powerful tool for hypothesis generation and the discovery of

novel biological insights. Chapters 2, 3, and 4 are related to unsupervised learning.

1.4.2 Supervised learning

Supervised learning is a core branch of machine learning where models are trained using

labeled data—data that includes the answer or outcome for each example. This method

relies on using known data inputs (features) and outputs (labels) to train a model that can

predict the output for new, unseen data. The process involves learning a function that maps

input features to outputs, which is then validated and refined using test data.
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In computational biology, supervised learning plays a crucial role in numerous applica-

tions. For example, supervised models are trained to understand the relationships between

genetic modifications and their impact on gene expression [78], aiding in the discovery of

genetic markers linked to particular traits or diseases. Chapter 5 is related to supervised

learning.

1.4.3 Predictive modeling

Predictive modeling is a technique in data science that uses statistical algorithms and ma-

chine learning techniques to predict outcomes based on input data. In computational bi-

ology, this approach is particularly valuable as it allows researchers to forecast biological

behaviors and properties from complex biological data sets.

In computational biology, predictive models are used to understand genomic function.

Predictive models help in identifying the functions of various genomic regions by analyz-

ing sequence data and correlating it with phenotypic outcomes [78]. This is essential for

understanding gene regulation, expression patterns, and ultimately, their role in health and

disease. Chapter 5 is related to predictive modeling.

1.4.4 Representation learning

Representation learning, a subset of machine learning, focuses on automatically discover-

ing the representations needed for feature detection or classification from raw data [79].

This approach enables a machine to identify the most informative features from large and

complex datasets without extensive human intervention.

Representation learning has a broad application in computational biology. In genomics,

representation learning can be used to transform raw DNA sequences into a lower-dimensional

space that captures essential biological features [80]. This is crucial for tasks like predicting

gene function, identifying regulatory motifs, or understanding the genetic basis of diseases.

In single-cell sequencing, representation learning is used to process high-dimensional data

from thousands of cells. Models can learn to represent cell states, types, or developmental

stages, facilitating downstream analysis like clustering, trajectory inference, and differen-
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tial expression analysis [81]. Chapters 2 and 3 are related to representation learning.

1.4.5 Multi-modal integration

Multi-modal integration refers to the process of combining information from multiple dif-

ferent sources or modalities to improve the understanding, analysis, or performance of a

system [82]. This approach is widely used across various fields including data science, ar-

tificial intelligence, and healthcare, where it leverages the strengths of different data types

to provide a more comprehensive view than any single source could offer.

Multi-modal integration in computational biology refers to the synthesis of diverse

types of biological data to gain a comprehensive understanding of biological systems and

processes [83]. This approach is increasingly critical as the field of biology has expanded to

generate voluminous datasets from different biological levels, such as genomic, transcrip-

tomic, proteomic, and metabolomic data. The integration of these diverse data types allows

researchers to obtain a more holistic view of how complex biological systems function at

multiple levels of regulation. For example, integrating genomic, transcriptomic, and pro-

teomic data can help identify the mechanisms underlying complex diseases by providing

insights into how changes at the DNA level affect RNA and protein expressions, which in

turn influence cellular behavior and disease phenotypes. This can be particularly valuable

in cancer research, where such integrative analyses can reveal how genetic mutations in-

fluence tumor progression and response to treatment. Chapter 4 is related to multi-modal

integration.

1.4.6 Probabilistic graphical model

Probabilistic graphical models (PGMs) are a sophisticated framework in statistics that com-

bines probability theory and graph theory to model complex networks of variables with

uncertainty [84]. They graphically represent the conditional dependencies among multiple

variables, which can be either directed (Bayesian networks) or undirected (Markov net-

works). By encapsulating the dependencies in a visual structure, these models facilitate

efficient computation of joint probabilities and provide a systematic approach for inference
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and learning in large datasets.

In computational biology, PGMs have been pivotal due to their ability to model the

stochastic nature of biological processes and integrate diverse types of data. They enable

researchers to infer gene regulatory networks from expression data, predict protein struc-

tures from amino acid sequences, and understand genetic linkages and their effects on phe-

notypes. Hidden Markov models [85], a type of PGM, are widely used in bioinformatics

for sequence alignment and protein domain prediction, crucial for understanding genetic

sequences and their functional implications. Chapter 2 is related to probabilistic graphical

models.

1.4.7 Tensor decomposition

Tensor decomposition is a mathematical technique that generalizes matrix decomposition

to higher-dimensional data, referred to as tensors [86]. A tensor is a multi-dimensional

array, and its decomposition involves breaking it down into simpler, interpretable compo-

nents. This process can uncover hidden patterns in the data across multiple dimensions,

which is particularly useful when dealing with complex datasets. Chapter 3 is related to

tensor decomposition.

1.4.8 Non-negativity

Non-negativity is a mathematical constraint applied in various analytical techniques, where

it restricts the values of variables or elements to be non-negative (zero or positive). This

principle is crucial in many computational models [87], particularly when the variables

under study inherently cannot assume negative values, such as concentrations of molecules,

expression levels of genes, or counts of biological entities.

In computational biology, non-negativity plays a pivotal role in data analysis and mod-

eling. For example, non-negative Matrix Factorization (NMF) is a widely used tech-

nique in computational biology for decomposing high-dimensional datasets into a lower-

dimensional space while maintaining non-negativity, making the components easier to in-

terpret biologically [52]. It’s particularly useful in gene expression analysis, where it helps
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in identifying patterns and clusters in the data that correspond to biological pathways or

cellular processes. Chapter 2 is related to non-negativity.

1.4.9 Interpretability

Interpretability in machine learning and computational models refers to the ability to un-

derstand and explain how decisions or predictions are made by a model. In the context of

computational biology, where models are often complex and deal with high-dimensional

data, interpretability is crucial for validating the scientific and clinical relevance of the

findings. For example, in gene expression analysis, models that are interpretable can help

biologists understand which genes or regulatory elements are driving particular phenotypes

or disease outcomes. This can be particularly useful in identifying new therapeutic targets

or understanding disease mechanisms.

The push for greater interpretability in computational biology not only aids scientific

discovery but also increases trust in machine learning models, particularly in genomics

where understanding the basis for understanding the complex biological mechanism. Chap-

ters 2, 3, and 5 are related to interpretability.
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Chapter 2

SPICEMIX enables integrative single-cell
spatial modeling of cell identity

2.1 Introduction

The compositions of different cell types in mammalian tissues, such as brain, remain poorly

understood, due to the complex interplay among intrinsic, spatial, and temporal factors that

collectively contribute to cell identity [2–4]. The emerging spatial transcriptomics tech-

nologies based on multiplexed imaging and sequencing [22–32] are able to reveal spatial

information of gene expression of dozens to tens of thousands of genes in individual cells

in situ within the tissue context. However, the development of computational methods that

can incorporate the unique properties of spatially-resolved transcriptome data to unveil cell

identities and spatially-variable features remains a challenge [37, 38].

Computational methods have been developed to use spatial transcriptome data to iden-

tify spatial domains and cell types in tissues [42–46], to explore the spatial variance of

genes [47–50], and to align scRNA-seq with spatial transcriptome data [51–54]. To model

spatial dependencies, methods using hidden Markov random fields (HMRFs) have been

proposed [43, 46]. However, the conventional HMRF has two major limiting assumptions

for modeling cell identity: that cell types or spatial domains are discrete, thereby ignoring

the interplay of intrinsic and spatial factors, and that they exhibit smooth spatial patterns,

which is not true of many cell types, such as inhibitory neurons with sparse spatial patterns.

More recently, graph convolution neural networks, such as SpaGCN [44], have been used
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for identifying spatial domains, but such methods are more susceptible to overfitting and

their learned latent representations are not easily interpreted, in comparison to effective lin-

ear latent variable models for scRNA-seq data, such as non-negative matrix factorization

(NMF) [88]. In addition, the existing methods typically do not integrate the modeling of

the spatial variability of genes with their contribution to cell identity. Therefore, there is a

need for robust, interpretable methods that can jointly model both the spatial and intrinsic

factors of cell identity, which is of vital importance to fully utilize the novel properties of

spatial transcriptome data.

Here, we introduce SPICEMIX (Spatial Identification of Cells using Matrix Factor-

ization), an interpretable and integrative framework to model cellular diversity based on

spatial transcriptome data. SPICEMIX uses latent variable modeling to elucidate the in-

terplay of spatial and intrinsic factors of cell identity. Crucially, SPICEMIX enhances the

NMF [88] model of gene expression by integrating with a graphical model of the spatial

organization of cells, leading to more meaningful latent representations. Applications to

the spatial transcriptome datasets of brain regions in human and mouse acquired by se-

qFISH+ [27], STARmap [28], and Visium [73] demonstrate, on both imaging-based and

spatial-barcoding-based sequencing technologies, that the enhanced SPICEMIX model of

cell identity can uncover complex spatially-variable metagenes and unveil important bio-

logical processes.

2.2 Methods

2.2.1 The probabilistic graphical model NMF-HMRF in SPICEMIX

Gene expression as matrix factorization

We consider the expression of individual cells Y = [y1, . . . , yN ] ∈ RG×N
+ , where constants

G and N denote the number of genes and cells, respectively, to be the product of K un-

derlying factors (i.e., metagenes), M = [m1, . . . ,mK ] ∈ RG×K , mk ∈ SG−1, and weights,

X = [x1, . . . , xN ] ∈ RK×N
+ , i.e.,

Y = MX + E. (2.1)
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This follows the non-negative matrix factorization (NMF) formulation of expression of

prior work [89]. The term E = [e1, . . . , eN ] ∈ RG×N captures unexplained variation or

noise, which we model as i.i.d. Gaussian, i.e., ei ∼ N (0, σ2
yI). To resolve the scaling

ambiguity between M and X , we constrain the columns of M to sum to one, so as to lie in

the (G − 1)-dimensional simplex, SG−1. For notational consistency, we use capital letters

to denote matrices and use lowercase letters denote their column vectors.

Graphical model formulation

The formulation for our probabilistic graphical model NMF-HMRF in SPICEMIX enhances

standard NMF by modeling the spatial correlations among samples (i.e., cells or spots in

this context) via the HMRF [90]. This novel integration aids inference of the latent M and

X by enforcing spatial consistency. The spatial relationship between cells in tissue is repre-

sented as a graph G = (V ,E) of nodes V and edges E , where each cell is a node and edges

are determined from the spatial locations. Any graph construction algorithm, such as dis-

tance thresholding or Delaunay triangulation, can be used for determining edges. For each

node i in the graph, the measured gene expression vector, yi, is the set of observed vari-

ables and the weights, xi, describing the mixture of metagenes are the hidden states. The

observations are related to the hidden variables via the potential function ϕ, which captures

the NMF formulation. The spatial affinity between the metagene proportions of neighbor-

ing cells is captured by the potential function φ. Together, these elements constitute the

HMRF.

More specifically, the potential function ϕ measures the squared reconstruction error of

the observed expression of cell i according to the estimated xi and M ,

ϕ(yi, xi) = exp (−Uy(yi, xi)) , Uy(yi, xi) =
(yi −Mxi)

2

2σ2
y

, (2.2)

where σ2
y represents the variation of expression, or noise, of the NMF. The spatial potential

function φ measures the inner-product between the metagene proportions of neighboring

cells i and j, weighted by the learned, pairwise correlation matrix Σ−1
x , which captures the
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spatial affinity of metagenes, i.e.,

φ (xi, xj) = exp (−Ux(xi, xj)) , Ux(xi, xj) =
x⊤
i

∥xi∥1
Σ−1

x

xj

∥xj∥1
. (2.3)

This form for φ has several motivations. The weighted inner-product allows the affinity

between two cells to be decomposed simply as the weighted sum of affinities between

metagenes and for the metagenes to have different and learnable affinities between each

other. It also allows the model to capture both positive and negative affinities between

metagenes. By normalizing the weights xi of each cell, any scaling effects, such as cell

size, are removed. In this way, the similarity that is measured is purely a function of the

relative proportions of metagenes. This form also affords a straightforward interpretation

for the affinity matrix Σ−1
x . Lastly, it is more convenient for optimization.

Given an observed dataset, the model can be learned by maximizing the likelihood

of the data. By the Hammersley-Clifford theorem [91], the likelihood of the data for the

pairwise HMRF can be formulated as the product of pairwise dependencies between nodes,

P (Y,X|Θ) =
1

Z(Θ)

∏
(i,j)∈E

φ(xi, xj)
∏
i∈V

ϕ(yi, xi)π(xi), (2.4)

where Θ = {∆,M} is the set of model parameters and metagenes and Z(Θ) is the normal-

izing partition function that ensures P is a proper probability distribution. The potential

function π is added to capture an exponential prior on the hidden states X ,

λx = 1, π(xi) = exp (−λx∥xi∥1) , (2.5)

with scale parameter 1. We normalize the average of the total normalized expression levels

in individual cells to K correspondingly.

Parameter priors

We introduce a regularization hyperparameter λΣ on the spatial affinities, which allows

the users to control the importance of the spatial relationships during inference to suit the

dataset of interest. As the parameter decreases, the influence of spatial affinities during

inference diminishes and the model becomes more similar to standard NMF. If we represent
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λΣ in the form λΣ = 1/(2σ2
Σ), we can treat it as a Gaussian prior, with zero mean and σ2

Σ

variance, on the elements of the spatial affinity matrix Σ−1
x ,

P
(
Σ−1

x

)
=

(√
π/λΣ

)−K2

exp
(
−λΣ

∥∥Σ−1
x

∥∥2

F

)
, (2.6)

where F denotes the Frobenius norm. Note that the matrix Σ−1
x is forced to be transpose

symmetric.

2.2.2 Alternating estimation of hidden states and parameters

To infer the hidden states and model parameters of the NMF-HMRF model in SPICEMIX,

we optimize the data likelihood via coordinate ascent, alternating between optimizing hid-

den states and model parameters. First, to make inference tractable, we approximate the

joint probability of the hidden states by the pseudo-likelihood [91], which is the product of

conditional probabilities of the hidden state of individual nodes given that of their neigh-

bors,

P (X|Θ) ≈
∏
i∈V

P (xi|xη(i),Θ), (2.7)

where η(i) is the set of neighbors to node i.

Estimation of hidden states

Given parameters Θ of the model, we estimate the factorizations X by maximizing their

posterior distribution. The maximum a posteriori (MAP) estimate of X is given by:

X̂ = arg max
X∈RK×N

+

P (X|Y,Θ) = arg max
X∈RK×N

+

P (Y,X|Θ) = arg max
X∈RK×N

+

{logP (Y,X|Θ)} (2.8)

= arg max
X∈RK×N

+

∑
i∈V

[−Uy(yi, xi) + log π(xi)]−
∑

(i,j)∈E

Ux(xi, xj)

 . (2.9)

This is a quadratic program and can be solved efficiently via the iterated conditional model

(ICM) [92] using the software package Gurobi [93].

Estimation of model parameters

Given an estimate of the hidden states X , we can likewise solve for the unknown model

parameters Θ by maximizing their posterior distribution. The MAP estimate of the param-
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eters Θ is given by:

Θ̂ = arg max
Θ

P (Θ|Y,X) = arg max
Θ

P (Y,X|Θ)P (Θ) = arg max
Θ

{logP (Y,X|Θ) + logP (Θ)}

(2.10)

= arg max
Θ

∑
i∈V

[−Uy(yi, xi) + log π(xi)]−
∑

(i,j)∈E

Ux(xi, xj)− logZ(Θ) + logP (Θ)


(2.11)

≈ arg max
Θ

∑
i∈V

[−Uy(yi, xi) + log π(xi)− logZi(Θ)]−
∑

(i,j)∈E

Ux(xi, xj) + logP (Θ)

 .

(2.12)

Eqn. 2.12 is an approximation by the mean-field assumption [91], which is used, in addition

to the pseudo-likelihood assumption, to make the inference of model parameters tractable.

We note that we can estimate metagenes, spatial affinity, and the noise level independently.

The MAP estimate of the metagenes M is a quadratic program, which is efficient to solve.

The MAP estimate of Σ−1
x is convex and is solved by the optimizer Adam [94]. Due to

the complexity of the partition function Zi(Θ) of the likelihood, which includes integra-

tion over X , it is approximated by Taylor’s expansion. Since it is a function of Θ, this

computation must be performed at each optimization iteration.

Initialization

To produce the initial estimates of the model parameters and hidden states, we do the

following. First, we use a common strategy for initializing NMF, which is to cluster the

data using K-means clustering, with K equal to the number of metagenes, and use the

means of the clusters as an estimate of the metagenes. We then alternate for T0 iterations

between solving the NMF objective for X and M . This produces, in only a few quick

iterations, an appropriate initial estimate for the algorithm, which will be subsequently

refined. We observed that if T0 is too large, it can cause the algorithm to prematurely reach

a local minimum before spatial relationships are considered. However, this value can be

easily tuned by experimentation, and in our analysis, we found that just 5 iterations were
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necessary.

2.2.3 Empirical running time

On a CentOS 7 machine with sixteen 2.30GHz Intel(R) Xeon(R) Gold 5218 CPUs and one

GeForce 2080 Ti GPU, SPICEMIX takes 0.5-2 hours to run on a typical spatial transcrip-

tome dataset with 2,000 genes and 1,000 cells. The GPU is used for the first 5 iterations, or

around that number, only, when the spatial affinity matrix Σ−1
x is changed significantly. In

subsequent iterations, most time is spent solving quadratic programs. Since the algorithm

uses a few iterations of NMF to provide an initial estimate, which is a reasonable starting

point, it is expected to find a good initial estimate of metagenes and latent states efficiently.

2.2.4 Generation and analysis of simulated data

We generated simulated spatial transcriptomic data following expression and spatial pat-

terns of cells of the mouse primary visual cortex. Cells in the mouse cortex are classified

into three primary categories: inhibitory neurons, excitatory neurons, and non-neurons or

glial cells [95, 96]. Excitatory neurons in the cortex exhibit dense, concentrated, layer-wise

specificity, whereas inhibitory neurons are sparse and can be spread across several layers.

Non-neuronal cells can be either layer-specific or scattered across layers. We simulated

single-cell data from an imaging-based method applied to a slice of tissue, which consists

of four distinct vertical layers and eight cell types: four excitatory, two inhibitory, and

two glial (Fig. 2.2a). Each layer was densely populated by one layer-specific excitatory

neuron type. The two inhibitory neuron types were scattered sparsely throughout several

layers. One non-neuronal type was restricted to the first layer and the other was scattered

sparsely throughout several layers. For each simulated image, or tissue sample, 500 cells

were created with locations generated randomly in such a way so as to maintain a minimum

distance between any two cells, so that the density of cells across the sample was roughly

constant. With this spatial layout of cells, we devised two methodologies for generating

gene expression data for individual cells. The first uses a metagene-based formulation and

the second uses a recent method, scDesign2 [97], which we fit to real scRNA-seq data of
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the mouse cortex [95].

2.2.5 Data processing for the used spatial transcriptome datasets

Preprocessing and analysis of seqFISH+ data

We applied SPICEMIX on a seqFISH+ dataset that profiled the mouse primary visual cor-

tex [27]. We first removed genes which had non-zero expression in less than 40% of cells,

which yielded an unbiased set of 2,470 genes. We then normalized the expression of these

genes by scaling the total counts to 10,000 per cell, adding one, and applying the log trans-

form: E ′
ig := log

(
1 +

(
104

Eig∑
g′ Eig′

))
. To generate a graphical representation of the cells,

we applied Delaunay triangulation to physical coordinates of cells, and then removed edges

of length larger than 300 pixels (30.9 µm).

For the regularization parameter of the spatial pairwise dependency, λΣ, we considered

possible values in the set {2|E| × 10−2, 2|E| × 10−4, 2|E| × 10−6}. We found 2|E| × 10−4

to yield the desired balance of spatial regularization based upon visual inspection. We

experimented with the number of metagenes, K, and chose the highest value before the

expression of metagenes became too sparse. We also examined the UMAP plots of latent

states, without annotations from the original analysis, to guide our selection. This led

us to use K = 20 metagenes for both SPICEMIX and NMF. For each hyperparameter

configuration, we ran several iterations of the algorithm with different initial random seeds

and chose the random seed that resulted in the highest value of the objective function,

Q. After learning the latent states, we z-score normalized the latent states along the cell

dimension and performed hierarchical clustering on the normalized latent states to define

cell type assignment using Ward’s method and the Euclidean distance [98]. We used the

Calinski-Harabasz (CH) index [99] as the criterion for determining the optimal number

of clusters. Before downstream analysis, we repeatedly merged the two clusters with the

lowest threshold form hierarchical clustering until the last 3 splits did not create any cluster

with less than five cells. We then eliminated outlier SPICEMIX cell types that had less than

five cells. This led to 15 cell types for SPICEMIX and 13 cell types for NMF.
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Preprocessing and analysis of STARmap data

We also applied SPICEMIX on a STARmap dataset that profiled the mouse primary visual

cortex [28]. We normalized the data by scaling the total counts to 10,000 per cell, adding

one, and applying the log transform: E ′
ig := log

(
1 +

(
104

Eig∑
g′ Eig′

))
. To generate a graph-

ical representation of the cells, we applied Delaunay triangulation to physical coordinates

of cells, and then removed edges of length larger than 600 pixels.

For the regularization parameter of the spatial pairwise dependency, λΣ, we considered

possible values in the set {2|E| × 10−2, 2|E| × 10−4, 2|E| × 10−6}. We found 2|E| × 10−4

to yield the desired balance of spatial regularization based upon visual inspection. We

experimented with the number of metagenes, K, and chose the highest value for each al-

gorithm before the expression of metagenes became too sparse. We also examined the

UMAP plots of latent states, without annotations from the original analysis, to guide our

selection. This led us to use K = 20 metagenes for SPICEMIX and K = 15 metagenes

for NMF. For each hyperparameter configuration, we ran several iterations of the algorithm

with different initial random seeds and chose the random seed that resulted in the highest

value of the objective function, Q. After learning the latent states, we z-score normalized

the latent states along the cell dimension and performed hierarchical clustering on the nor-

malized latent states to define cell type assignment using Ward’s method and the Euclidean

distance [98]. We used the CH index as the criterion for determining the optimal number

of clusters. Before downstream analysis, we removed an outlier SPICEMIX cell type that

had only one cell. This led to 16 cell types for SPICEMIX and 11 cell types for NMF.

Preprocessing and analysis of Visium data

Lastly, we applied SPICEMIX to a dataset acquired from the 10x Genomics Visium plat-

form that profiled spatial transcriptome of the human DLPFC [73]. For analysis with

SPICEMIX, we removed genes which had non-zero expression in less than 10% of spots,

which yielded an unbiased set of 3,194 genes. We did not apply this filtering when using

SpaGCN or BayesSpace. We then normalized the expression of these genes by scaling

the total counts to 10,000 per spot, adding one, and applying the log transform: E
′
ig :=
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log
(
1 +

(
104

Eig∑
g′ Eig′

))
. To generate a graphical representation of the spots, we defined

the neighborhood of a spot to be the set of directly adjacent spots in the hexagonal grid,

since the spots in each FOV form a hexagonal grid. Therefore, except for spots on the edge

of the grid, each spot has exactly 6 neighbors.

2.3 Results

2.3.1 Overview of SPICEMIX

SPICEMIX models spatial transcriptome data by a probabilistic graphical model, which

we call NMF-HMRF (Fig. 2.1 and Methods). Our model has a natural interpretation

for single-cell spatial transcriptome data, where each node in the graph represents a cell

and edges capture nearby cell-to-cell relationships, but it can also be applied to in situ

sequencing-based methods (e.g., Visium [25]), where each node represents a spatially-

barcoded spot that consists of potentially multiple cells.

For each node i in the graphical model, a latent state vector xi represents the mixture of

weights for K different intrinsic or extrinsic factors of cell identity (Fig. 2.1). To capture

the continuous nature of cell state, our model extends the standard HMRF by allowing these

latent states to be continuous. Importantly, different types of correlations of latent states in

nearby cells are captured by the matrix Σ−1
x , which, unlike a conventional HMRF and many

other spatial models, does not exclusively assume smooth spatial patterns, but instead has

the flexibility to represent both the smooth and sparse spatial patterns that compose real

tissue. Each element of the K×K matrix Σ−1
x represents the pairwise affinity between two

factors, providing an intuitive interpretation of the spatial patterns of cells in tissue. For

each factor, a “metagene” in the G×K matrix M captures the expression of its associated

genes, where G denotes the number of genes. The observed expression from spatial tran-

scriptome data, yi = Mxi for node i, follows a robust linear mixing model, which gives an

intuitive interpretation of the relationship of gene expression to the different latent factors

representing cell identities and critical genes. Thus, the NMF-HMRF model in SPICEMIX

is able to uniquely integrate the spatial modeling of the HMRF with the NMF formulation
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Figure 2.1: Overview of SPICEMIX. Gene expression measurements and a neighbor graph are extracted from spatial
trancriptome data and fed into the SPICEMIX framework. SPICEMIX decomposes the expression yi in cell (or spot) i
into a mixture of metagenes weighted by the hidden state xi. Spatial interaction between neighboring cells (or spots)
i and j is modeled by an inner product of their hidden states, weighted by Σ−1

x , the inferred spatial affinities between
metagenes. The hidden mixture weights X, the metagene spatial affinity Σ−1

x , and K metagenes M , all inferred by
SPICEMIX, provide unique insight into the spatially variable features that collectively constitute the identity of each cell.

for gene expression into a single model for spatial transcriptome data.

Given an input spatial transcriptome dataset, SPICEMIX simultaneously learns the intu-

itive metagenes M of latent factors, the latent states X for all nodes, and their spatial affin-

ity Σ−1
x . This is achieved by our alternating maximum a posteriori (MAP) optimization al-

gorithm. Importantly, in SPICEMIX, metagenes are an integral part of the model outcome,

which presents a methodological advance in comparison to the calculation of spatially-

variable genes as a post-processing step in other recent methods (such as SpaGCN [44]). A

regularizing parameter allows users to control the weight given to the spatial information

during optimization to suit the input data. The detailed description of the NMF-HMRF

model is provided in the Methods section with additional details of optimization in the

published version.

2.3.2 Evaluation using simulated spatial transcriptome data

We first evaluated SPICEMIX using simulations that model the mouse cortex, a featured

region for many spatial transcriptomic studies (Fig. 2.2a-b; see Methods for the simulation

method details). We devised two methods of generating expression based on the position

and type of each cell: Approach I follows a metagene-based simulation; Approach II uses

scDesign2 [97] trained on real scRNA-seq data [95]. For Approach II, we introduced two

forms of spatial noise: leakage, which randomly swaps some reads of neighboring cells,

to mimic challenges of processing real spatial transcriptomics data; and additive noise that

follows random, spatially-smooth patterns. We compared the results from SPICEMIX to
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that of NMF, HMRF, Seurat [100], and the recent SpaGCN [44]. We evaluated different

methods by comparing the inferred cell types with the true cell types using the adjusted

Rand index (ARI) metric. For SPICEMIX and NMF, we subsequently applied Louvain

clustering to the learned latent representations. The approaches for preprocessing the data

and for choosing other hyperparameters for each method are provided in the published

version.

For both simulation approaches, we found that SPICEMIX consistently outperformed

other methods (Fig. 2.2c-e). For Approach I, SPICEMIX achieved the highest average

ARI scores (0.65-0.82) across scenarios. For lower noise settings (σy = 0.2), the ARI

of SPICEMIX was 9-18% higher than that of SpaGCN or NMF (Fig. 2.2d). SPICEMIX,

SpaGCN, and NMF all outperformed Seurat and HMRF. For the higher noise setting (σy =

0.3), SPICEMIX clearly outperformed all methods (Fig. 2.2d). We found that SPICEMIX

was able to recover both the layer-specific and sparse metagenes that underlie the identity

of cells. For example, SPICEMIX successfully recovered metagene 7, which is specific to

layer L1 (Fig. 2.2c) and is enriched in eL1 excitatory neurons (blue in Fig. 2.2a). Notably,

SPICEMIX was able to reveal nearly all excitatory neurons (Fig. 2.2e). SPICEMIX also

recovered metagene 6 (Fig. 2.2c), which captures intrinsic factors of the sparse inhibitory

neuron subtype i1 (red in Fig. 2.2a). In contrast, the equivalent of metagene 7 for NMF is

strongly expressed across layers L1-L3 (Fig. 2.2c), and NMF confused some eL3 excitatory

neurons (light green) with eL1 excitatory neurons (Fig. 2.2e). The equivalent of metagene

6 for NMF shows a more diffuse pattern (Fig. 2.2c). Additional evaluation by varying

the parameter λx or zero-thresholding to reflect different sparsity of the latent variables

of NMF further demonstrated the robust advantage of SPICEMIX. In addition, SpaGCN,

Seurat, and HMRF all incorrectly assigned the spatial patterns for many more excitatory

neurons (Fig. 2.2e).

For simulation Approach II, SPICEMIX performed the best for all but one scenario, for

which it tied with NMF, and the advantage of SPICEMIX became more significant as the

influence of noise and leakage on spatial expression patterns became more prevalent. We
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found that the spatial metagenes from SPICEMIX reliably reflect both cell type composition

and spatial noise . Overall, SPICEMIX achieved much more accurate spatial assignments

of cells than all other methods.

Taken together, we showed that the integration of matrix factorization and spatial mod-

eling in SPICEMIX yields better and robust inference of spatially variable features (both

sparse and layer-specific) that underlie cell identities as compared to existing methods.

2.3.3 Improving cell identity modeling of seqFISH+ data

We applied SPICEMIX to a recent single-cell spatial transcriptomic dataset of the primary

visual cortex of a mouse (five samples of nearby regions), acquired by seqFISH+ [27], with

single-cell expression of 2,470 genes in 523 cells [27]. We compared the spatial patterns

revealed by SPICEMIX to those produced by NMF with various levels of sparsity via λx

and zero-thresholding, as well as Louvain clustering and the HMRF-based method of Zhu

et al. [43], both reported in Eng et al. [27]. In addition, SPICEMIX revealed spatially-

informed metagenes capturing biological processes in the cortex.

We first clustered the cells in the latent representation of SPICEMIX using hierarchi-

cal clustering, which revealed five excitatory neural subtypes, two inhibitory neural sub-

types, and eight glial types (Fig. 2.3a), supported by known marker genes [95] (Fig. 2.3b

(left)). Major cell type assignments were generally consistent among SPICEMIX, NMF,

and Louvain clustering (Fig. 2.3b (middle)). However, SPICEMIX uncovered more refined

cell subtypes and states. Notably, SPICEMIX identified three distinct clusters following

known stages of oligodendrocyte maturation [101], from oligodendrocyte precursor cells

(OPCs) to mature, myelin-sheath forming oligodendrocytes, throughout the five samples,

as reflected by the spatially-informed metagenes. Metagene 8 is enriched among oligo-

dendrocytes, distinguishing them from OPCs (Fig. 2.3b (right)), while metagene 7, which

is also in OPCs, separates a cluster of early-stage oligodendrocytes (Oligo-E) from later-

stage oligodendrocytes (Oligo-L), suggesting that these metagenes capture their maturation

trajectory. These stages are supported by the expression patterns of the OPC marker gene

Cspg4, the differentiating oligodendrocyte marker gene Tcf7l2 [102], and the mature oligo-
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Figure 2.2: Performance evaluation based on simulated spatial transcriptome data. a. Illustration of the simulated
spatial transcriptome data of the mouse cortex, including 3 major cell types distributed in 4 layers. Excitatory (blue,
cyan, green, and brown) and inhibitory (red and yellow) neurons are star-shaped and glial cells (purple and magenta)
are ovals. Subtypes are distinguished by their colors. b. Dendrogram showing the similarity of the expression profiles of
the 8 cell types (top), their metagene profiles (middle), and their colors and shapes (bottom) used in panel (a). The top
4 rows correspond to metagenes that determine major type, the next 6 rows correspond to metagenes that determine
subtypes or are layer-specific, and the bottom 3 rows correspond to noise metagenes. c. Simulated expression of
metagenes 6 and 7, from a single sample generated with σy = 0.2 and σx = 0.15, in their spatial context (top) and
the inferred expression of those metagenes by SPICEMIX and NMF. Expression levels of metagenes are linearly scaled
to [0, 1] for visualization. Visualizations in panel (e) are of the same simulated sample. d. Performance comparison of
SPICEMIX, NMF, HMRF, Seurat, and SpaGCN. Bar plots of the average adjusted Rand index (ARI) score, that measures
the matching between the identified cell types and the true cell types, are shown. The score is averaged across n=20
replicates per scenario. Results are reported across four simulation scenarios, with varying degrees of randomness.
Error bars show +/- one standard deviation. e. Imputed cell-type labels of each method for the excitatory neurons,
shown in their spatial context. Neurons that were correctly identified are colored faintly. Neurons that were incorrectly
identified are colored dark gray. The upper left panel is the ground truth cell type of all cells in the simulated sample. The
colors match those of panels (a) and (b).
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dendrocyte marker gene Mog [103] (Fig. 2.3b (left)), in addition to a large set of marker

genes for oligodendrocyte stages from [101]. Metagene 7 was distinguished from meta-

gene 8 by its strong spatial affinity with metagenes 3 and 4 (highlighted by black arrows in

Fig. 2.3c), which are expressed primarily by the excitatory neurons of deeper tissue layers

(eL5, eL6a, and eL6b) (Fig. 2.3b (right)). No other method (NMF, Louvain clustering as

reported by [27], and the HMRF-based method of Zhu et al. [43] as reported in [27]) could

clearly distinguish these spatially-distinct cells (Fig. 2.3b (middle)). SPICEMIX also dis-

covered spatially-variable features that led to the identification of excitatory and inhibitory

neuron subtypes whose layer-specificity patterns matched those of prior scRNA-seq stud-

ies.

Together, our analysis of seqFISH+ data of the mouse cortex with SPICEMIX revealed

spatially-variable features and more refined cell states. Our results demonstrate the advan-

tages and unique capabilities of joint modelling of spatial and transcriptomic data using

SPICEMIX.

2.3.4 Revealing spatial metagenes and cell types from STARmap data

Next, we applied SPICEMIX to a single-cell spatial transcriptome dataset of the mouse V1

neocortex acquired by STARmap [28], consisting of 930 cells passing quality control, all

from a single field-of-view (FOV), with expression measurements for 1,020 genes. We

compared primarily the results of SPICEMIX, NMF, and Wang et al. [28]. An asterisk is

appended to the end of the cell labels of Wang et al. [28] when referenced.

We found that SPICEMIX identified refined, spatial subtypes (Fig. 2.4a) and improved

upon the cell labels of [28] (Fig. 2.4b). The learned spatial affinities (Fig. 2.4c) enabled

improved cell layer-specificity, which was particularly notable among excitatory neurons

(Fig. 2.4d). The clear boundaries between excitatory layers matched layer-enrichment anal-

ysis from scRNA-seq studies (see Figure 4b in [104]), in contrast to the cell assignments

reported in Figure 5d in [28], which showed significant mixing of excitatory types across

boundaries. The NMF formulation of SPICEMIX helped reassign a large set of cells from

the Astro-1* type of [28] to eL5, which was further refined along layer boundaries by the
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Figure 2.3: Application of SPICEMIX to the seqFISH+ data from the mouse primary visual cortex [27]. Note that colors
throughout the figure of cells and labels correspond to the cell-type assignments of SPICEMIX. a. UMAP plot of the
latent states of SPICEMIX (left) and the dendrogram of the arithmetic average of the expression for each cell type of
SPICEMIX (right). It is highlighted in (a) (left) that SPICEMIX further delineated inhibitory neurons into VIPs (yellow) and
SSTs (red-brown) enclosed by the orange dashed cycle and refined oligodendrocytes and OPCs into separate subtypes:
Astro/Oligo (magenta), Oligo-1 (beige), Oligo-2 (blue), and OPC (coral), enclosed within the red dashed cycle. b. (Top)
The inferred pairwise spatial affinity of metagenes, or Σ−1

x . The strong attractions between metagene 7 and metagenes
3 and 4, which helped distinguish the spatial patterns of Oligo-L cells, are highlighted by the black arrows. (Bottom) The
inferred pairwise spatial affinity of SPICEMIX cell types. c. (Left) Average z-score normalized expression of known marker
genes within SPICEMIX cell types, along with the number of cells belonging to each type (colored bar plot). The colored
boxes on the top following the name of each marker gene correspond to their known associated cell type. (Middle)
Agreement of SPICEMIX cell-type assignments with those of the original analysis in [27]. (Right) Average expression of
inferred metagenes within SPICEMIX cell types. The expression is normalized by the standard deviation per metagene.
Metagenes 7 and 8, which revealed the separation of oligodendrocyte subtypes, are highlighted by black arrows. d. In
situ SPICEMIX cell-type assignments for all cells in each of the five FOVs. Colors of cell types are the same as in above
panels.

learned spatial affinities (Fig. 2.4b (middle), d). This reassignment was supported by the

expression of known excitatory marker genes. In contrast, we found that HMRF missed

sparse cell types and smoothed across layers, missing even the layer-wise structure of ex-

citatory neurons. Further, SPICEMIX achieved a refined, spatially-informed separation of

three eL6 subtypes, driven by the identification of two strongly spatially-attracted meta-
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genes: 5 and 7 (highlighted by a black arrow in Fig. 2.4c).

SPICEMIX also produced a significant refinement of glial subtypes. SPICEMIX iden-

tified two oligodendrocyte clusters and an OPC cluster, distinguished by their relative ex-

pression of metagenes 12, 13, and 14 (Fig. 2.4b (right)). Metagenes 12 and 13 were highly

enriched in layer L6 and strongly attracted to each other (Fig. 2.4c, Fig. 2.5a). Their pro-

portional expression by oligodendrocytes within L6 captured a maturation trajectory from

OPCs to Oligo-1 cells that could not be revealed by other methods (see later section). Meta-

gene 14 also has distinct oligodendrocyte markers (Fig. 2.4b right), but scatters from layers

L2/3 to L6 (Fig. 2.5a), leading to a spatially distinct Oligo-2 type, clearly separated in the

SPICEMIX latent space from neighboring excitatory neurons. The expression of oligoden-

drocyte marker genes identified by [101] supports that the Oligo-1 and Oligo-2 clusters

represent mature oligodendrocytes, distinct from the OPCs. In addition, SPICEMIX dis-

tinguished astrocytes into two types (Astro-1 and Astro-2) based on metagenes 11 and 12.

Although Astro-2 cells shared metagene 12 with OPCs, both their spatial location in the

superficial layer and the expression of astrocyte marker genes defined them as astrocytes.

In contrast, Astro-1 cells expressed metagene 11 with a scattered spatial pattern throughout

all layers (Fig. 2.5a). This Astro-1/Astro-2 separation was supported by the expression of

known marker genes [105], including Gfap (P=0.024), a marker for astrocytes in the glia

limitans, and Mfge8 (P=0.0013), a marker for a separate, diffuse astrocyte type (Fig. 2.5b).

We found that NMF did not reveal these subtypes and the NMF metagenes typically exhib-

ited unspecific spatial patterns and pairwise affinity.

These results suggest that SPICEMIX is able to refine cell identity and metagene infer-

ence with distinct spatial patterns from STARmap data, further demonstrating its advan-

tage.

2.3.5 Identifying continuous oligodendrocytes myelination stages

The expression of metagenes learned by SPICEMIX from seqFISH+ and STARmap sug-

gested the existence of continuous factors of oligodendrocyte identity. Applying Mono-

cle2 [106] to the raw counts of cells in the STARmap dataset labeled by SPICEMIX as
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Figure 2.4: Metagenes and refined cell types discovered by SPICEMIX from the STARmap data of the mouse primary
visual cortex [28]. Note that colors throughout the figure of cells and labels correspond to the cell-type assignments
of SPICEMIX. a. UMAP plots of the latent states of SPICEMIX and the dendrogram of the arithmetic average of the
expression for each cell type of SPICEMIX (right). It is highlighted in a (left) that SPICEMIX delineated eL6 neurons into
three subtypes enclosed in the green cycle and delineated oligodendrocytes and OPCs into three separate subtypes:
Oligo-1 (beige), Oligo-2 (blue), and Astro-2/OPC (magenta), enclosed within the beige dashed cycle. b. (Top) The
inferred pairwise spatial affinity of metagenes, or Σ−1

x . The strong attraction between metagene 5 and metagene 7,
which helped distinguish excitatory eL6 neurons, is highlighted by the black arrow. (Bottom) The inferred pairwise spatial
affinity of cell types. c. (Left) Average z-score normalized expression of known marker genes within SPICEMIX cell
types, along with the number of cells belonging to each type (colored bar plot). The colored boxes on the top following
the name of each marker gene correspond to their known associated cell types. (Middle) Agreement of SPICEMIX cell-
type assignments with those of the original analysis in [28]. (Right) Average expression of inferred metagenes within
SPICEMIX cell types. The expression is normalized by the standard deviation per metagene. The average proportion of
metagenes 12 and 13 in oligodendrocyte cell types, which helped delineate subtypes, are highlighed by black arrows. d.
In situ map of SPICEMIX cell-type assignments for all cells.

oligodendrocytes showed a clear trajectory from the OPCs to the mature Oligo-1 class

(Fig. 2.5c). The Oligo-2 class is likely a distinct type of mature oligodendrocytes com-

pared to Oligo-1. Importantly, the relative expression of metagenes 12 and 13, which were
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Figure 2.5: Spatial glial subtypes and the process of myelination in oligodendrocytes revealed by SPICEMIX metagenes
in STARmap data of the mouse primary visual cortex [28]. Note that colors throughout the figure of cells and labels
correspond to the cell-type assignments of SPICEMIX. a. (Left) In situ map of SPICEMIX cell-type assignments for
astrocyte and oligodendrocyte cells in the sample. (Middle and right) In situ maps of expression of both layer-specific and
ubiquitous metagenes learned by SPICEMIX that are relevant to astrocytes and oligodendrocytes. b. The log-normalized
expression of astrocyte subtype marker genes in Astro-1 (n=78 cells) and Astro-2 (n=13 cells) types of SPICEMIX (left),
and a comparison of the percentage of cells expressing those marker genes (right). ∗: The two-sided Wilcoxon rank
sum test P<0.05. c. Trajectory analysis of SPICEMIX oligodendrocyte types using Monocle2, showing the unnormalized
expression of metagenes 12 and 13 along the trajectory from OPC to Oligo-1. d. (Left) The expression of metagene 13
plotted against the expression of metagene 12 for oligodendrocytes of the SPICEMIX Oligo-1 and OPC types. (Right)
The expression of important marker genes for myelin-sheath formation in oligodendrocytes plotted against the relative
expression of metagenes 12 and 13 of the same cells. The dashed lines are the fitted linear regression model. The title
of each plot consists of the gene symbol and the Benjamini/Hochberg corrected two-sided Wald test with t-distribution
P-value of having a nonzero slope, respectively. ∗: P<0.05.

highly expressed in OPC and Oligo-1 cells, respectively, strongly correlated with the in-

ferred trajectory (Fig. 2.5c).

Using linear regression, we tested if the differences in the proportions of metagenes 12

and 13 along this trajectory corresponded to the expected change in expression of myelin

sheath-related genes during myelination. The eleven genes that we tested were those from

the STARmap panel attributed to myelin sheath formation, according to Gene Ontology

(GO) that were expressed in at least 30% of cells. We found that the correlations of seven

of the eleven genes are significant (P< 0.05, after a two-step FDR correction for multiple

testing) (Fig. 2.5d), supporting our hypothesis. One of these genes is Atp1a2, recently

confirmed by scRNA-seq studies to be suppressed as myelination progresses [107, 108],

further demonstrating the robustness of our analysis.

This result further demonstrates that the latent representation of SPICEMIX is uniquely
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able to elucidate important biological processes underlying cell states.

2.3.6 Unveiling spatial patterns from Visium human brain data

We next sought to demonstrate the effectiveness and interpretability of SPICEMIX on a

dataset of the human dorsolateral prefrontal cortex (DLPFC) acquired by the 10x Genomics

Visium platform [73]. We made a direct comparison of SPICEMIX to two recent meth-

ods on this dataset: SpaGCN [44] and BayesSpace [46], which was designed for spatial-

barcoding methods.

SPICEMIX achieved consistent advantages in identifying the layer structures of DLPFC

(Fig. 2.6a), which consisted of six cortical layers (layer L1 to layer L6) and white mat-

ter. We focused on the 4 FOVs from sample Br8100 for this analysis. The clusters from

SPICEMIX produced an ARI score between 0.54 and 0.61 (average 0.575), with consistent

advantage over SpaGCN and BayesSpace (Fig. 2.6a). We observed that although SpaGCN

and BayesSpace could produce layer-like patterns, these layers did not closely match the

true boundaries. In contrast, SPICEMIX produced contiguous layers for all FOVs and iden-

tified clearer boundaries (Fig. 2.6b) and learned metagenes that clearly manifest the layer

structure of DLPFC. Using all four FOVs as input did not significantly affect the ARI score

of SpaGCN (Fig. 2.6a), and we were unable to run BayesSpace effectively on all four

FOVs simultaneously. Although layer L4 could not be reliably identified by any method,

the metagenes a3 and a6 learned by SPICEMIX showed differential expression among L3,

L4, and L5 (P< 10−300, highlighted in Fig. 2.6c).

The interpretability of metagenes from SPICEMIX helped unveil spatially-variable ex-

pression and spatial patterns of cell types of DLPFC. We used differentially expressed

genes (DEGs) identified from [109]. The high ranks of astrocyte DEGs in metagene a1

(Fig. 2.6d) suggest that it captures astrocyte expression, along with its ubiquitous pres-

ence in all seven layers (Fig. 2.6c), consistent with a recent work [72]. Oligodendrocyte

DEGs were enriched in metagenes a6 and a7, which were primarily in deep layers and the

white matter, respectively (Fig. 2.6c-d). This is consistent with the spatial distributions

of oligodendrocytes [110] and suggests a spatial-subtype separation. Moreover, the DEGs
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of excitatory neurons in superficial layers and deep layers were enriched in metagenes a3

and a6, respectively, which were present mostly in layers L1-L3 and layer L6, accord-

ingly, reflecting the layer-like patterns of excitatory neurons (Fig. 2.6c-d). These findings

confirm the unique ability of SPICEMIX to unveil spatially-variable features and cell type

composition.

Figure 2.6: Application to the Visium dataset of human dorsolateral prefrontal cortex [73]. a. Comparison of the
performance of SPICEMIX, BayesSpace, and SpaGCN on the 4 FOVs from sample Br8100. SPICEMIX and SpaGCN(4)
were trained on 4 FOVs simultaneously and evaluated both on single FOVs and on 4 FOVs altogether. BayesSpace
and SpaGCN(1) were trained and evaluated only on single FOVs. For SpaGCN and BayesSpace, gray dots represent
one of n=10 runs with different random seeds. Data are presented as mean values and 95% CIs. b. The in situ layer
assignments of SPICEMIX for FOV 151673. The boundaries between ground-truth layers are illustrated by dashed lines.
The gyrus and sulcus subregions of L3 identified by SPICEMIX are labeled L3g and L3s, respectively. c. The in situ
expression of 8 metagenes from SPICEMIX, normalized by the maximum value per metagene across FOVs. Metagenes
a3 and a6 collectively distinguish L4 spots (n=7952) from L3 (n=28160) (two-sided t-test P smaller than the smallest
representable value) and L5 (n=21400) (two-sided t-test P= 6 × 10−322; red rectangles). d. The rank distribution
of known marker genes [109] (n=53, 406, 188, and 67 genes, respectively) of 4 cell types in the 8 metagenes. ‘Exc
(S)’ and ‘Exc (D)’ denote markers of excitatory neurons of superficial and deep layers, respectively. For each row,
metagenes with greater ranks are highlighted by red rectangles (one-sided highlighted-vs-rest Mann-Whitney U test
P= 2 × 10−21, 10−90, 3 × 10−32, 10−28, respectively). e. Kernel-smoothed in situ expressions of metagenes a4 and
a5, showing their differential expressions (highlighted by arrows) between the gyric side (right side) and the sulcal side
(upper side). f. The distribution of the rank difference of gyro-sulcal DEGs between metagenes a4 and a5. Gyric
DEGs have greater ranks in a5 than in a4 (two-sided Wilcoxon P= 3× 10−26, n=1836 genes), and sulcal DEGs exhibit
the opposite trend (two-sided Wilcoxon P= 4 × 10−25, n=1136 genes). All boxplots show the median, first, and third
quartiles, and whiskers extend no further than 1.5×IQR (inter-quartile range).

2.3.7 Delineating finer anatomic structures of the human brain

SPICEMIX was able to identify finer anatomical structures and cell composition of the brain

based on its learned spatially-variable metagenes from the DLPFC Visium data [73]. On

the four FOVs from sample Br8100, metagenes a4 and a5 captured the gradual gyro-sulcal
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variability (Fig. 2.6e-f). We found that more than 50% of the genes used for SPICEMIX

were differentially expressed across the two regions, strongly supporting this separation.

The relative ranking of DEGs within each metagene, according to its weight, was signifi-

cantly associated with the respective region (P < 10−24) (Fig. 2.6f). This shows the distinct

ability of the metagenes from SPICEMIX to represent gradual changes in spatial gene ex-

pression.

Applying SPICEMIX to FOV 151507 from sample Br5292 (Fig. 2.7a), we found that

metagenes b1-b3 defined three finer anatomical structures within layer L1 annotated in [73]

(Fig. 2.7b-c)). Based on the brightness of the staining in the histology image, we classified

each spot into one of four types (Fig. 2.7b (top left)): the dark stripe (yellow), the bright gap

(green), the flanking cortex (blue), and ambiguous mixtures of these three regions (grey).

All 7 marker genes of mural cells, which constitute the wall of blood vessels, from [105]

that passed quality control were highly expressed in the dark stripe. The enrichment of 5

out of the 7 genes was significant (P≤ 0.002), suggesting that the dark stripe is potentially

a blood vessel. Aside from the brightness, spots exhibited other varying phenotypes across

the three regions, such as cell density, UMI count, and mitochondrial RNA ratio, indicating

that these three regions are biologically different. We found that metagenes b1, b2, and

b3 were enriched in the flanking cortex, the white gap, and the blood vessel, respectively

(Fig. 2.7b-c), supporting the delineation of the three anatomical structures by SPICEMIX.

Additionally, metagenes b4 and b5 defined two finer anatomical structures in the white

matter region (Fig. 2.7d). Specifically, metagene b4 was mainly present in a 400µm-wide

superficial layer (Fig. 2.7d (S)), whereas metagene b5 was nearly restricted to the deep part

(Fig. 2.7d (D)). Spots also exhibited different phenotypes across the two structures that are

supported by DEGs. Consistent with this finding, marker genes of oligodendrocytes had a

higher rank in metagene b5, which was enriched in the deep part (Fig. 2.7e).

Together, these results further demonstrated the ability of SPICEMIX to capture subtle

but biologically important anatomical structures from spatial transcriptome data acquired

by a variety of technologies.
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Figure 2.7: SPICEMIX metagenes associated with finer anatomical structures in the human dorsolateral preforntal cortex
from Visium data [73]. a. The in situ layer annotations of the ground truth on FOV 151507. b. The finer structure
annotations of spots (top left) and the in situ inferred unnormalized expressions of metagenes b1-b3 on FOV 151507
(the other three panels). The color legend of the top left panel is in (c). Based on the intensity on the histological
image, a spot was assigned to a dark stripe (green), a bright gap (blue), a peripheral region (orange), or a mixture of
the bright gap and dark stripe (grey). As highlighted by black arrows, metagenes b1-b3 are enriched in the peripheral
region, the bright gap, and the dark stripe, respectively. c. The differential expressions of metagenes b1-b3 across the
finer structures. One-sided one-vs-rest Mann-Whitney U test P is displayed above each column. For better visualization,
the raw expression levels were divided by the maximum expression level across all spots in the 4 FOVs per metagene.
d. The inferred in situ unnormalized expression of metagenes b4 and b5 on FOV 151507, implying the delineation of
the superficial part (denoted by S) and the deep region (denoted by D) in white matter. e. The rank distribution of
oligodendrocyte marker genes in metagenes b4 and b5. These genes have significantly higher ranks in metagene b5
than in b4 (one-sided Wilcoxon P is shown) All boxplots show the median and first and third quartiles, and whiskers
extend to values no further than 1.5×IQR (inter-quartile range).

2.4 Discussion

We have developed SPICEMIX, an unsupervised method for modeling the diverse factors

of cell identity in complex tissues based on various types of spatial transcriptome data. The

integrated model of SPICEMIX combines the expressive power of NMF for modeling gene

expression with the HMRF for modeling spatial relationships, advancing current state-of-

the-art modeling for spatial transcriptomics as clearly shown in both simulation evaluation

and real data applications. On single-cell spatial transcriptome data of the mouse primary

visual cortex from seqFISH+ and STARmap, SPICEMIX demonstrated its effectiveness in

producing reliable spatially variable metagenes and biologically informative latent repre-

sentations of cell identity. On the human DLPFC data acquired by Visium, SPICEMIX

improved the identification of annotated layers and revealed finer anatomical structures.

A significant feature of SPICEMIX is the spatially variable metagene formulation, which
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can model the interplay of the spatial and intrinsic composition of the transcriptome and

not merely the spatial patterns of individual genes [47, 50]. Crucially, as part of the model

formulation, SPICEMIX considers how these metagenes are integrally related to continuous

cell states, which represents a major distinction compared to other approaches [43, 44]. We

note that since SPICEMIX is an unsupervised method, we have showcased its application to

datasets with large, unbiased gene panels. Though for datasets with targeted panels guided

largely by prior knowledge, a tool such as Tangram [54] could be utilized to extend the

gene panel and thereby further increase the power of SPICEMIX.

As the field of spatial transcriptomics continues to grow and become more widely avail-

able, new technologies and datasets will open many new directions. In particular, it will

be of great interest to model the dynamics of spatial patterns across diverse samples and

along normal development or disease progression. Another exciting development is the

generation of spatial multiomic data, which integrates transcriptome with other data types

such as protein expression [111]. Understanding the relationships between different data

modalities within their spatial context could lead to a more complete understanding of the

in situ molecular underpinning of diverse cell states in complex tissues. There is also con-

tinued interest in studying cell-cell interaction and communication [112], which spatial

transcriptomics can uniquely elucidate.

Enhanced computational methods that can analyze, summarize, and interpret spatial

omics data will be crucial to future studies. By effectively modeling the complex mix-

ing of latent intrinsic and spatial factors of heterogeneous cell identity in complex tissues,

SPICEMIX offers a useful tool to facilitate discoveries for diverse types of spatial omics

data. We note that SPICEMIX is not limited to transcriptomic data only, and its method-

ology may also be well-suited for multiomic data. In future work, enhancements may be

made to SPICEMIX to allow for progressive changes in the learned spatial patterns. Fur-

ther, the refined cell identities and learned spatial affinities of SPICEMIX may be useful

for studying other aspects of tissue dynamics, including cell-cell interactions. Overall,

SPICEMIX is a powerful framework for the analysis of diverse types of spatial transcrip-
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tiome and multiomic data, with the distinct advantage that it can unravel the complex mix-

ing of latent intrinsic and spatial factors of heterogeneous cell identity in complex tissues.
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Chapter 3

Ultrafast and interpretable single-cell
3D genome analysis

3.1 Introduction

The advent of high-throughput whole-genome mapping methods for the three-dimensional

(3D) genome organization such as Hi-C [5] has revealed distinct features of chromatin

folding in various scales within the cell nucleus, including A/B compartments [5], subcom-

partments [6, 7], topologically associating domains (TADs) [8, 9], and chromatin loops [6].

These multiscale 3D genome features collectively contribute to vital genome functions such

as transcription [12, 13]. However, the variation of 3D genome features and their func-

tional significance in single cells remain poorly understood [1, 14]. The recent advances

of single-cell Hi-C (scHi-C) technologies have provided us with unprecedented opportuni-

ties to probe chromatin interactions at single-cell resolution, from a few cells of given cell

types [15–18] to thousands of cells from complex tissues [19–21]. These new technolo-

gies and datasets have the promise to unveil the connections between genome structure and

function in single cells for a wide range of biological contexts in health and disease [14].

However, the complexity of scHi-C data has created significant analysis challenges.

Computational methods HiCRep/MDS [39], scHiCluster [40], LDA [17], and the more

recent deep learning based methods 3DVI [41] and Higashi [113] have been developed for

the embedding and imputation of the sparse scHi-C data. These existing methods, however,

cannot (i) effectively infer informative embeddings for the delineation of rare cell types in
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complex tissues, (ii) directly identify critical chromatin organizations related to cell type-

specific genome functions, and (iii) efficiently operate on large-scale datasets with limited

memory resources. It remains an open question on how to develop effective computational

methods that can identify rare cell types in complex tissues in an interpretable manner with

high scalability, key to understanding the interplay among chromatin organization, genome

functions, and cellular phenotypes.

The recent scHi-C embedding method scHiCluster [40] uses linear convolution and

random walk with restart to impute the sparse contact maps and applies principal compo-

nent analysis (PCA) on the imputed maps. This requires the storage of all imputed dense

maps in the memory, drastically limiting its application to datasets with a large number of

cells at high resolution. More recently, deep learning based scHi-C analysis methods have

been proposed, including 3DVI [41] based on a deep generative model and our recent work

Higashi [113] that uses a hypergraph neural network architecture [114]. Both methods

suggest better embedding results with Higashi being the first scHi-C embedding approach

to demonstrate that the complex neuron subtypes in human prefrontal cortex can be re-

vealed by chromatin conformation only. However, due to the computation-intensive nature

of neural networks, the scalability of both methods has much room for improvement for

large-scale datasets. For 3DVI, individual variational autoencoders are trained for each ge-

nomic distance and each chromosome, leading to thousands of deep neural network models

to be trained. For Higashi, since the model treats each contact of scHi-C data as individual

samples, it takes a long time to fully iterate over the dataset or to train the model till conver-

gence. Crucially, methods for improving the interpretability of the embeddings for scHi-C

data are particularly lacking, limiting our understanding of 3D genome structure-function

connections for a diverse set of cellular phenotypes.

Here, we develop Fast-Higashi, an interpretable and scalable framework for embedding

and integrative analysis of scHi-C data. We propose a concept for single-cell 3D genome

analysis, called “meta-interactions” (analogous to the definition of metagenes in scRNA-

seq analysis [52]), to improve the model interpretability. Our proposed Fast-Higashi al-
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gorithm jointly produces embeddings and meta-interactions for a given scHi-C dataset.

Applications to various scHi-C datasets of complex tissues demonstrate that Fast-Higashi

has overall comparable or even better embeddings than existing methods but is much faster

than neural-network based methods (>40x faster than 3DVI and >9x faster than Higashi),

enabling ultrafast delineation of cell subtypes or rare cell types in different biological con-

texts. Moreover, Fast-Higashi is able to infer critical chromatin meta-interactions that de-

fine cell types with strong connections to cell type-specific gene transcription. Fast-Higashi

is the fastest and most scalable method for large-scale scHi-C data analysis to date.

3.2 Methods

3.2.1 Method details

The design of Fast-Higashi is based on a tensor decomposition model, called

core-PARAFAC2 [115], and is generalized to simultaneously model multiple 3-way tensors

that share only a single dimension (single cells). The core-PARAFAC2 model is usually

used to analyze multimodal data where observations may not be aligned along one of its

modes. A concrete example in other applications is the electronic health records that con-

tain multimodal phenotypes of multiple patients at various time points. Because a particular

disease stage may begin at different time points and may have varying lengths across pa-

tients, a critical difficulty is that it is hard to align observations of different patients along the

temporal dimension. Similarly, in scHi-C contact maps, TAD-like structures usually have

varying sizes and boundaries in different genomic bins, obscuring the direct alignment of

genomic bins. Therefore, we have developed Fast-Higashi based on core-PARAFAC2 to

address this issue. In the following sections, we first introduce how Fast-Higashi performs

tensor decomposition on the scHi-C datasets assuming that contact maps of only one chro-

mosome are present. We discuss next how we generalize to multi-chromosome cases. We

then derive the optimization procedure and introduce the partial random walk with restart

(Partial RWR) module to address the sparseness of single-cell Hi-C dataset efficiently.
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3.2.2 Problem formulation of the Fast-Higashi model

For a scHi-C dataset, let C denote the set of chromosomes. We formulate a collection

of scHi-C contact maps of chromosome c ∈ C as a 3-way tensor, denoted by X(c) ∈

RNc×Lc×M , where Nc is the number of genomic loci (also denoted as genomic bins) in

chromosome c, Lc is the number of features at each bin, and M is the number of cells in

this dataset. In principle, Lc need not be equal to Nc because, for example, we may use

different resolutions for genomic bins along the two dimensions and even include additional

epigenomic features. However, for convenience, here we only consider contact maps and

use the same resolution for both dimensions. We assume that X(c) follows a 3-way core-

PARAFAC2 model which includes: (1) a 3-way tensor B(c) ∈ RNc×Lc×rc of rc meta-

interactions; (2) a matrix A(c) ∈ RNc×rc of bin weights indicating importance for each bin

in every meta-interaction; (3) a chromosome-specific transformation matrix D(c) ∈ RR×rc;

and (4) an orthogonal matrix V ∈ RM×R that contains cell embeddings and is shared across

all chromosomes, where rc and R are hyperparameters, representing the dimensions of the

chromosome-specific cell embedding and shared cell embedding.

We first introduce the cell-wise form of our model. As shown in Fig. 3.1a, the ℓ-th slice

of X(c) along the last dimension, denoted by X
(c)
·,·,ℓ, is the ℓ-th single-cell contact map, and

we assume that it can be approximated by the weighted sum of meta-interactions:

X
(c)
·,·,ℓ =

rc∑
k=1

Diag(A
(c)
·,k )×B

(c)
·,·,k × (V D(c))ℓ,k + E

(c)
·,·,ℓ, (3.1)

where E·,·,ℓ ∈ RNc×Lc is a matrix of i.i.d. Gaussian noises with zero mean and arbi-

trary variance. Since V is the cell embedding matrix shared across all chromosomes, right

multiplying V by the chromosome-specific transformation matrix D(c) projects V to an-

other space, which we term the chromosome-specific embedding space. The chromosome-

specific embeddings V D(c) directly quantify the contribution of each meta-interaction to

single-cell contact maps, i.e., the overall weight of the k-th meta-interaction in cell ℓ is

equal to (V D(c))ℓ,k. Additionally, we also assume that bins in a meta-interaction may have

different weights, i.e., the weight of bin i in the k-th meta-interaction is A(c)
i,k . Together, the
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weight of the k-th meta-interaction at the i-th bin in cell ℓ is equal to the product of (1) the

meta-interaction weight in the chromosome-specific embedding of cell ℓ and (2) the bin

weight in the bin weight matrix, i.e., (V D(c))ℓ,k · A(c)
i,k .

To simplify the optimization problem, we introduce an alternative bin-wise form of this

model [116]. Let X(c)
i ∈ RLc×M (i ∈ [Nc]) be the i-th slice along the first dimension of

X(c), i.e., the features of the i-th bin across all cells, and we use similar notations for other

tensors. We assume that X(c)
i has the following decomposition:

X
(c)
i = B

(c)
i ×Diag(A

(c)
i )×D(c)⊤ × V ⊤ + E

(c)
i , (3.2)

where Ei ∈ RLc×M is a noise matrix. Since the noise is assumed to follow i.i.d. Gaussian

distributions, the optimal set of parameters is the solution to the following optimization

problem:

arg min
∀c, B(c),A(c),D(c)

V

∑
c∈C

Nc∑
i=1

∥X(c)
i −B

(c)
i ×Diag(A

(c)
i )×D(c)⊤ × V ⊤∥2F (3.3)

3.2.3 Additional constraints for uniqueness

Now we introduce additional constraints to address the uniqueness issue of Eqn. 3.3 and

to improve the ability of Fast-Higashi to capture critical topological patterns in single-cell

Hi-C contact maps.

Without loss of generality, we show the uniqueness issue on a dataset with only one

chromosome, denoted by c. Let
(
B(c), A(c), D(c), V

)
be one optimal solution to Eqn. 3.3.

Then for any P (c) ∈ Rrc×rc and S(c) ∈ RNc×rc ,({
B

(c)
i Diag(A

(c)
i )(P (c))−1Diag(S

(c)
i )−1

}Nc

i=1
, S(c), D(c)P (c)⊤, V

)
is also an optimal solution to Eqn. 3.3, implying the non-uniqueness. To address this, we

impose constraints on the Gram matrices of B(c)
i that,

B
(c)⊤
i B

(c)
i ≡ B

(c)
0 ,∀i ∈ [Nc] (3.4)
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where B
(c)
0 ∈ Rrc×rc is constant over i. This is equivalent to requiring that B(c)

i can be

transformed to each other by left multiplying an orthogonal matrix, i.e., a rotation along

the feature dimension. Note that B(c)
0 is not determined a priori and is optimized during

inference. Similarly, for any Q ∈ RR×R, solution
(
B(c), A(c), Q−1D(c), V Q

)
is also equiv-

alent to
(
B(c), A(c), D(c), V

)
, implying the non-uniqueness. To address this, we require V

to be orthogonal. The scaling of tensors B(c), A(c), and D(c) also leads to non-uniqueness

and is addressed in Eqn. 3.11.

These constraints enable Fast-Higashi to be less prune to noise and allow Fast-Higashi

capture critical topological patterns from single-cell Hi-C contact maps. A concrete exam-

ple is the TAD-like structure where the number of interactions within this region is expected

to be higher but also non-uniform, in that, the near-diagonal elements usually include more

interactions. The characteristics of a TAD-like structure cause the boundaries of this TAD-

like structure to be the same for all bins in it but cause the location of the peak to vary

across these bins. This indicates that it is impossible to directly find a pattern that fits more

than one bin in this TAD-like structure. However, since we allow bin-specific rotations

along the feature dimension, these rotations potentially can keep the boundary unchanged

and redistribute the contacts among the features of each bin, allowing the shift of the peak.

Matrices A(c) are designed to capture the other bin-to-bin variability in scHi-C datasets.

For example, bins usually have varying accessibility, which leads to different row sums in

single-cell contact maps, and even in bins from one TAD-like structure. This variability

is expected to be biologically meaningful and cannot be corrected by normalization. In

Fast-Higashi, the bin weight matrix A(c) will capture this variability. In addition, a single

bin may also show cell type-specific accessibility, which is expected to be reflected as vari-

ation across meta-interactions in Fast-Higashi. In Fast-Higashi, these bin-specific and cell

type-specific characteristics will be captured in the bin weight matrix A(c) so that (1) any

two bins may have different scaling factors in one meta-interaction and (2) one bin may

have different scaling factors in any two meta-interactions. Therefore, these constraints

retain the ability of capturing critical structures but also reduce the parameter spaces of
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Fast-Higashi, making it more robust to tolerate noise.

3.2.4 Efficient parameter inference in Fast-Higashi

Here we show key steps in the derivation of a coordinate descent optimization procedure

(summarized in Algorithm 1) for the optimization problem in Eqn. 3.3. We also introduce

necessary tricks for a GPU-compatible algorithm.

Reformulation of the optimization problem

To simplify the optimization, we express B(c)
i as U (c)

i B̄(c) where U
(c)
i ∈ RLc×rc is orthogo-

nal, and B̄(c) ∈ Rrc×rc . Both U (c) and B̄(c) are model parameters and are optimized during

inference. The relation between B
(c)
0 in Eqn. 3.4 and B̄(c) is B(c)

0 = B̄(c)⊤B̄(c). With this

reformulation, the optimization problem in Eqn. 3.3 can be rewritten as

arg min
∀c, U(c),B̄(c),A(c),D(c)

V

∑
c∈C

Nc∑
i=1

∥X(c)
i − U

(c)
i × B̄(c) ×Diag(A

(c)
i )×D(c)⊤ × V ⊤∥2F (3.5)

Derivation for the optimal solution of U (c)
i and V ∗

Now we derive the optimal value of U (c)
i given the rest parameters. For the sake of sim-

plicity, let TU be B̄(c) Diag(A
(c)
i )(V D(c))⊤ and the optimization of U (c)

i can be simplified

as follows:

U
(c)∗
i := arg min

U
(c)
i

∥X(c)
i − U

(c)
i TU∥2F = arg min

U
(c)
i

∥U (c)
i TU∥2F − 2⟨X(c)

i , U
(c)
i TU⟩ (3.6)

= arg min
U(c)

∥T⊤
U ∥2F − 2⟨U (c)

i , X
(c)
i T⊤

U ⟩ = arg max
U(c)

⟨U (c)
i , X

(c)
i T⊤

U ⟩, (3.7)

where the second to last equality is true because ∥UT∥F = ∥T∥F holds for any orthogonal

matrix U . Since U
(c)
i is orthogonal, the solution to this optimization has a closed form.

Specifically, let the SVD of X
(c)
i T⊤

U be ŨU Σ̃U Ṽ
⊤
U , and the optimal solution of U

(c)∗
i is

ŨU Ṽ
⊤
U . Note that, the optimal value of different frontal slices of U (c) can be solved in

parallel.

The closed form of V ∗ can be derived similarly. Let T (c)
i := U

(c)
i B̄(c) Diag(A

(c)
i,· )D

(c)⊤,
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and then

V ∗ := arg min
V

∑
c,i

∥X(c)
i − T

(c)
i V ⊤∥2F = arg max

V

〈
V,

∑
c,i

X
(c)⊤
i T

(c)
i

〉
, (3.8)

which implies V ∗ = ŨV Ṽ
⊤
V where ŨV Σ̃V Ṽ

⊤
V is the SVD of

∑
c,i X

(c)⊤
i T

(c)
i .

Derivation for the optimal solution of B̄(c), A(c), and D(c)

Next, we derive the optimization of B̄(c), A(c), and D(c).

Since U
(c)
i and V are orthogonal, we can simplify the optimization in Eqn. 3.5 to

arg min
B̄(c),A(c),D(c)

∑
i

∥B̄(c) Diag(A
(c)
i,· )D

(c)⊤ − U
(c)⊤
i X

(c)
i V ∥2F (3.9)

After we stack the rc-by-R matrices U (c)⊤
i X

(c)
i V to create a 3-way tensor Y (c) ∈ RNc×rc×R,

the optimization becomes:

arg min
B̄(c),A(c),D(c)

∥∥∥∥∥
rc∑
k=1

A
(c)
·,k ⊗ B̄

(c)
·,k ⊗D

(c)
·,k − Y (c)

∥∥∥∥∥
2

F

, (3.10)

which is exactly the PARAFAC model and B̄(c), A(c), and D(c) can be solved by alterna-

tive least square (ALS) [86]. To guarantee the uniqueness of the solution, we include an

additional constraint that controls the scaling of the three factors:∥∥∥B̄(c)
·,k

∥∥∥2

2
=

∥∥∥A(c)
·,k

∥∥∥2

2
and

∥∥∥D(c)
·,k

∥∥∥2

2
= 1, ∀k ∈ [rc] (3.11)

Mini-batch optimization

To improve the scalability of the method, we implemented the optimization of U (c) in a

batch-wise manner. For a typical human scHi-C dataset of 10,000 cells, if we set the

resolution to 500Kb, the 3-way dense tensor of chromosome 1 that is ready for tensor

operations takes up to 6GB GPU RAM, which leaves inadequate RAM for subsequent

computations on GPU. To utilize the computation power of GPU, we divide X(c) and U (c)

into batches along the first dimension, and update all the frontal slices of U (c) from this

batch in parallel using GPU. To minimize the data transfer amount between CPU and GPU,

we compute the T
(c)
i for the optimization of V in Eqn. 3.8 before we remove the copy of
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Algorithm 1 Optimization procedure for Fast-Higashi
1: for chromosome c do
2: Initialize A(c) to be full of one
3: Initialize B̄(c) to be the identity matrix
4: Flatten the first two dimensions of X(c), denote its rc right singular vectors by

(V D)(c)

5: end for
6: Concatenate all (V D)(c) along the rank dimension, and initialize V as its top R left

singular vectors
7: Initialize D(c) as V ⊤(V D)(c) for every chromosome c
8: for 1 ≤ t ≤ T do
9: Update the value of U (c) by its closed form for each chromosome c

10: Update the value of V by its closed form
11: Update B̄(c), A(c), D(c) by alternative least square (ALS) until convergence for chro-

mosome c
12: end for

this batch from GPU. Since rc is much smaller than Nc in practice, the entire tensor T (c)

fits in the GPU. Besides, we store these 3-way tensors X(c) in the COO format and transfer

each batch of slices into GPU in the form of sparse COO tensors, which minimizes the

data transfer as well as CPU memory usage. Hence, our method is optimized for GPU

with limited RAM and data transfer rate to utilize its computation power and accelerate the

overall running time.

3.2.5 Initialization of the Fast-Higashi model

Here we provide efficient initialization of model parameters based on their interpretations

(Algorithm 1). We initialize the matrix A(c) to be full of one and the square matrix B̄(c) to

be the identity matrix, for each chromosome. For chromosome c, we find the SVD of the

single-cell contact maps of chromosome c and keep the top rc right singular vectors which

are the initial cell embeddings of chromosome c. To aggregate information from multiple

chromosomes, we concatenate the initial cell embeddings from all chromosomes and find

its SVD. We initialize the meta embedding V to be one of the orthogonal matrix and D(c)’s

to contain the rest components in the SVD.

46



3.2.6 Embedded partial random walk with restart (Partial RWR)

To mitigate the sparseness of the scHi-C contact maps, we sought to incorporate the ran-

dom walk with restart (RWR) data imputation method [40] into the Fast-Higashi frame-

work. However, direct utilization of RWR before the tensor decomposition process is not

desirable. The RWR imputed contact maps are usually much denser than the original con-

tact map, leading to much higher memory consumption for storing the results and lower

computational efficiency for transforming data format between sparse matrices to dense

tensors as well as data transferring between GPU and CPU. Our solution is to integrate

the RWR process during the optimization process of tensor decomposition and compute

the RWR imputation batch by batch. The challenge for this design is that, as mentioned

in the above section, the batch of the tensor decomposition optimization process is de-

fined at the frontal slice of the tensor (Eqn. 3.3), i.e., the genomic bins, while the normal

RWR requires the input of a complete graph adjacency matrix. To utilize RWR in our

framework, here we propose the partial random walk with restart (Partial RWR) algorithm.

The procedures of this algorithm are shown in Fig. 3.1b, which consists of the following

steps: For simplicity, in this section, we use X ∈ RN×N×M to represent the tensor rep-

resentation of scHi-C contact maps of one chromosome. First, we fetch a small batch of

the tensor x(i) := Xi:i+bs ∈ Rbs×N×M along the first dimension, where bs represents the

batch size. Then, based on this small batch of tensor, we calculate the local affinity matrix

a(i, ℓ) ∈ Rbs×bs of bins within this batch for each cell ℓ based on dot-product similarity:

pj,k,ℓ =
x(i)j,k,ℓ∑
k′ x(i)j,k′,l

a∗(i, ℓ) = p·,·,ℓ · p⊤·,·,ℓ (3.12)

After that, the standard RWR algorithm is applied to these local affinity matrices:

at(i, ℓ) = (1− ρ)at−1(i, ℓ)a∗(i, ℓ) + ρI (3.13)

where a0(i, ℓ) = I, and ρ is the restart probability in the RWR algorithm. We denote the

converged results of the RWR algorithm as a∞(i, ℓ) ∈ Rbs×bs and use it as the weight to
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propagate the information from the original batch of the tensor x(i, ℓ)

y(i, ℓ) = a∞(i, ℓ) · x(i, ℓ) (3.14)

Finally, we use y(i, ℓ) as the imputed results and pass it to the tensor decomposition opti-

mization procedure. Our analysis showed that partial RWR can approximate the imputation

of standard RWR well even with small batch sizes (see later section for details. In this work,

we use batch size 64 to keep the balance between accuracy and computational efficiency.

3.2.7 Benchmarking scHi-C embedding methods

In this work, we mainly compared Fast-Higashi against three existing scHi-C embedding

methods: Higashi [113], scHiCluster [40], and 3DVI [41] in terms of the quality of the

generated embeddings and the runtime. We kept the embedding dimensions as the recom-

mended ones for each method. The default hyper-parameters of Fast-Higashi sets R as 64,

and rc as 0.6Nc. But due to the orthogonal property of V , one can always set R as a large

enough number, and then use only the top-k dimensions. The final dimension number k can

be determined using methods developed for selecting the number of principal components

for scRNA-seq analysis [117]. For methods that allow selecting the maximum genomic

distance to be considered, we set it to be 100Mb for all methods. We evaluated the em-

beddings generated by different methods under various evaluation metrics including: (1)

Modularity score between the generated embeddings and the reference cell type label, (2)

Adjusted rand index (ARI) and adjusted mutual information (AMI) score between the lou-

vain clustering results and reference cell type label. Because the embeddings from different

methods may reach the best clustering results at different combinations of parameters of

Louvain clustering, we did a grid search for the number of neighbors and resolution param-

eters of the Louvain clustering for each method. The top 5 best clustering results for each

method were kept and averaged as the final results. (3) We trained a logistic regression

model using 10% of the cells and predicted the cell type for the rest 90% of cells. The

Micro-F1 and Macro-F1 scores between the predicted cell type and reference ones were

used to quantify the performance.
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For the runtime analysis, all methods require different input formats and methods in-

cluding 3DVI and Higashi can choose to only generate embeddings skipping the process of

imputing sparse contact maps. To make a fair comparison, the runtime of all methods was

calculated without the time of data processing, including transforming the scHi-C data into

the format of a hypergraph in Higashi and reformatting the sparse contact maps into bands

in 3DVI. For 3DVI and Higashi, we turned off the imputation function in the program and

only used them to generate embeddings. For all methods, we added multiprocessing when

possible even the multiprocessing was not originally implemented in some of the meth-

ods. Specifically, we parallelized the linear convolution and the random walk with restart

algorithm of scHiCluster across all cells. We also parallelized 3DVI across different chro-

mosomes, allowing the program to make full utilization of the GPUs. All methods were

tested on a Linux machine with 1 NVIDIA RTX 2080 Ti GPU card, a 16-core Intel Xeon

Silver 4110 CPU, and 252GB memory. All methods were set to use GPU when supported.

3.2.8 Aggregated single-cell A/B value

We developed the aggregated single-cell A/B value to collectively quantify the chromatin

conformation at multiple loci in one cell. We calculated the scA/B value of every 500Kb

genomic locus in single cells following the method proposed in Tan et al. [19]. We defined

the scA/B value of one gene as the average of the scA/B values of the genomic loci spanned

by that gene. Although Higashi software includes an algorithm to to calculate scA/B values

based on its embeddings and imputations, to avoid potential analysis bias, we instead used

the more orthogonal method from Tan et al. [19]. It is worth noting that in Tan et al. [19],

by using the calculated scA/B values as embeddings, the observed refined clustering results

in Fast-Higashi embeddings do not exist. To summarize the behavior of a group of genes,

we defined the aggregated scA/B value of these genes in one cell as the average scA/B

value across all genes in that cell. To systematically assess the differential expression of a

group of genes between two sets of cells, we examined the difference in the distribution of

aggregated scA/B value of these genes between the two sets of cells by t-test.
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3.3 Results

3.3.1 Overview of Fast-Higashi

Fig. 3.1a illustrates the overall architecture of Fast-Higashi, which is an interpretable model

for scHi-C analysis. In Fast-Higashi, scHi-C contact maps from different chromosomes are

represented as multiple three-way tensors. Then a tensor decomposition model is utilized

and generalized to simultaneously model these 3-way tensors that share only a single di-

mension (single cells). The tensor decomposition model takes the tensor representation of

scHi-C data as input and decomposes the tensors into multiple factor matrices (Fig. 3.1a) to

jointly infer cell embeddings as well as meta-interactions. These meta-interactions manifest

the aggregated patterns of chromatin interactions, which are analogous to the concept of

metagenes in scRNA-seq analysis. Each meta-interaction corresponds directly to a specific

dimensions of the cell embeddings, providing a direct solution to interpret the association

between embedding results and 3D genome features. We derived the mini-batch optimiza-

tion procedure for the tensor decomposition model such that it can efficiently model tensors

with drastically different sizes and effectively scale to scHi-C datasets with a large number

of cells or at high resolutions. To mitigate the sparseness of the scHi-C contact maps while

keeping the advantages of mini-batch training, we proposed a partial random walk with

restart algorithm (Partial RWR, Fig. 3.1b) that efficiently imputes the sparse scHi-C contact

maps before passing them to the tensor decomposition model. The detailed descriptions of

the tensor decomposition model, the Partial RWR module, and the optimization procedures

are in the Methods section.

3.3.2 Fast-Higashi achieves accurate and fast embedding of scHi-C data

We systematically evaluated the performance of Fast-Higashi for generating embedding

vectors for various scHi-C datasets. To demonstrate the effectiveness of Fast-Higashi for

delineating subtle cell-to-cell variability of 3D genome features, we applied it to three

recent scHi-C datasets of complex tissues at 500Kb resolution. These datasets include the

Tan et al. [19] dataset, the Lee et al. [20] dataset, and the Liu et al. [21] dataset . We
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Figure 3.1: Overview of Fast-Higashi. a. Workflow of the Fast-Higashi algorithm. Given an input scHi-C dataset of k
chromosomes, Fast-Higashi models it as k 3-way tensors. The tensor of chromosome c is denoted by X(c), where the
first two dimensions correspond to genomic bins and the last dimension corresponds to the single cells. Fast-Higashi
then decomposes the tensors X(c) into four factors: a set of meta-interactions (B(c)), a genomic bin weights indicating
importance for each bin (A(c)), a cell embedding matrix V that is shared across all chromosomes, and a chromosome-
specific transformation matrix D(c) that transforms the shared cell embeddings into chromosome-specific ones. b.
Workflow of the partial random walk with restart (Partial RWR) algorithm. The Partial RWR is integrated into the Fast-
Higashi framework. When calculating the decomposed factors for frontal slices of the tensor X(c), the corresponding
slices would be imputed through Partial RWR first. The imputation process includes the calculation of local affinity,
standard RWR algorithm, and information propagation using both sliced tensor and the RWR imputed affinity matrix.

evaluated the performance of Fast-Higashi and baselines under various evaluation metrics

including: (1) the modularity score, (2) the adjusted rand index (ARI) and adjusted mutual

information (AMI) scores, and (3) the Micro-F1 and Macro-F1 scores . We made direct

comparisons of Fast-Higashi against three scHi-C embedding methods, including two very

recently developed scHi-C embedding methods, Higashi [113] and 3DVI [41] as well as

scHiCluster [40] (which has been updated recently). It has been suggested that the updated

scHiCluster can distinguish neuron subtypes better on the Lee et al. dataset while the earlier

version of scHiCluster cannot achieve [20, 113].

As shown in Fig. 3.2a-c, the UMAP visualizations of the Fast-Higashi embeddings on

these three datasets show clear clustering patterns consistently corresponding to the an-

notated cell types. Notably, we observed several major advantages of the Fast-Higashi

embeddings compared to other methods. On the Lee et al. dataset of the human prefrontal

cortex, based on the UMAP visualization of the embedding results, Fast-Higashi can re-
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Figure 3.2: Evaluation of Fast-Higashi for generating embeddings for scHi-C data. a. UMAP visualization of the Fast-
Higashi embeddings for the Tan et al. dataset [19]. b. UMAP visualization of the Fast-Higashi embeddings for the Lee et
al. dataset [20]. Cells in the red box are neuron cells. c. UMAP visualization of the Fast-Higashi embeddings for the Liu
et al. dataset [21]. d. Quantitative evaluation based on adjusted rand index (ARI) scores of the Louvain clustering results
for each scHi-C embedding methods. e. Runtime of different embedding methods across different datasets. f. UMAP
visualization of the Fast-Higashi embeddings for the neuron cells in the Lee et al. dataset (cells in the red box in (b)).
Cell type information is from Luo et al. [118]. g. Quality of the embeddings for the neuron cells in the Lee et al. dataset
measured as silhouette coefficients for neuron subtypes. All cell type abbreviations are consistent with the data source.

solve the differences among neuron subtypes clearly, separating all Pvalb, Sst, Vip, Ndnf,

L2-3, L4, L5, and L6 neuron subtypes and showing more detailed structures within some
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cell types (Fig. 3.2b, marked in red box). To the best of our knowledge, this is the first

time that excitatory neurons of different layers can be separated by using chromatin inter-

action information only. The embeddings of 3DVI separate neurons into two categories,

excitatory neurons and inhibitory neurons, lacking the ability for more refined cell type

delineation.

On the Liu et al. dataset of the mouse hippocampus, we again observed Fast-Higashi’s

clear advantage over other methods. Fast-Higashi is the only method that can separate CA3

cells from CA1 cells, and successfully identify small clusters of VLMC, PC, and EC cells,

while all other methods (except Higashi) cannot (Fig. 3.2c).

All these observations are supported by our quantitative results, where Fast-Higashi

consistently achieves the highest or second best scores across all metrics of all three datasets

(Fig. 3.2d). We repeated the evaluation on two sci-Hi-C datasets with relatively lower

coverage and/or a smaller number of cells and reached similar conclusions .

In addition, we assessed the runtime of all scHi-C embedding methods. As shown in

Fig. 3.2e, Fast-Higashi is much faster than all existing scHi-C embedding methods, es-

pecially the neural-network based methods (>40x faster than 3DVI and >9x faster than

Higashi on the scHi-C datasets used for benchmarking). The runtime of Higashi mostly

depends on its number of training epochs and is almost constant for datasets with more

than 1000 cells.

Together, these results demonstrate that Fast-Higashi achieves the state-of-the-art per-

formance for scHi-C embeddings with an ultrafast computational efficiency.

3.3.3 Fast-Higashi enables the identification of rare cell types in complex
tissues

In addition to the global evaluation on how well the Fast-Higashi embeddings correspond

to the annotated cell types from the original datasets, we also sought to demonstrate that

Fast-Higashi has unique capabilities to further improve the annotation of rare cell types in

complex tissues.

We first visualized the Fast-Higashi embeddings of the neuron cells in the Lee et al.
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[20] dataset using the UMAP projection (Fig. 3.2f). We obtained a new cell type annota-

tion from Luo et al. [118], where the methylation profiles of the Lee et al. dataset were

jointly embedded with single-cell methylation profiles from snmC-seq, snmCT-seq, and

snmC2T-seq on human prefrontal cortex to annotate cell types. This joint analysis allows

the characterization of neuron subtypes in the Lee et al. dataset at a much more refined

resolution. Based on the UMAP visualization, we observed that the smaller clusters within

the same cell type (red box in Fig. 3.2b) can in fact be delineated into more detailed cell

subtypes. For instance, the two finer clusters of Sst in Fig. 3.2b correspond to the CALB1

and B3GAT2 cell subtypes in Fig. 3.2f. By comparing with the UMAP visualization of

other embedding methods , we found that Fast-Higashi has the best ability to distinguish

neuron subtypes, especially for the excitatory neurons. For inhibitory neurons, both Fast-

Higashi and Higashi perform well and are the only two methods that can identify a smaller

cluster of the UNC5B type . To further support these observations, we also evaluated each

method’s ability of separating neuron subtypes on the Lee et al. dataset through silhouette

score analysis (Fig. 3.2g). Consistent with our observations based on the UMAP visualiza-

tion, Fast-Higashi achieves the highest average silhouette score on the neuron subtypes.

We next systematically evaluated the robustness of Fast-Higashi’s ability of identify-

ing rare cell types, by simulating scHi-C dataset with different coverage. Specifically, we

downsampled the contact pairs from the Lee et al. dataset to 10% to 50% of the original

dataset and applied Fast-Higashi and Higashi, two models with strongest performance on

these simulated datasets.

Additionally, we applied Fast-Higashi to the Tan et al. dataset of the developing mouse

brain. Fast-Higashi is able to separate most of the cell types marked from the data source

(Fig. 3.2a). In addition, we found two small clusters within the interneuron cell types and

two separate clusters of neonatal neurons that do not correspond to the original Neonatal

Neuron 1/2 labels from the dataset. With the observation on the Lee et al. dataset that the

small clusters within a cell type could reflect more refined subtypes, we believe that this

could also be the case for the Tan et al. dataset. Detailed results will be discussed in a later
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Figure 3.3: Analysis of the chromatin meta-interactions generated by Fast-Higashi. a. Heatmap of the single cell
loadings for each meta-interaction of chromosome 1 for the Kim et al. dataset [17]. b. Visualization of the differential
contact maps generated based on meta-interactions and those generated based on bulk Hi-C (marked with “ground
truth”). Border color matches the cell type color in (a). c. Spearman correlation between differential contact maps
generated based on meta-interactions and those generated based on bulk Hi-C (marked with “ground truth”). d. Heatmap
of the single cell loadings for each meta-interaction of the whole genome for the Lee et al. dataset [20]. e. Mean
differential contact values of the lists of cell type marker genes averaged for each cell type. The mean differential contact
values are calculated using the corresponding meta-interactions as the summation of values for each bin in the meta-
interaction contact map. For each cell type, the top 200 marker genes were identified using Seurat [51].

section.

Taken together, these results confirm the unique capability of Fast-Higashi for identify-

ing rare cell types or subtypes based on scHi-C data only.

3.3.4 Fast-Higashi effectively captures cell-type specific 3D genome struc-
tures

We then sought to demonstrate that the meta-interactions captured by Fast-Higashi reflect

the cell type-specific 3D genome features and can be used to interpret the generated embed-

dings. As a proof-of-principle, we first analyzed the meta-interactions of chromosome 1 for

the Kim et al. [17] dataset. In this section, we mainly focus on the 4 cell types with enough

cell numbers, including GM12878, H1ESC, HAP1, and HFFc6. We first visualized the sin-

gle cell loadings of these meta-interactions (chromosome-specific embeddings). As shown
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in Fig. 3.3a, each cell type has its preferred set of meta-interactions. Note that due to the

utilization of SVD (singular value decomposition) for solving the meta-interaction during

the optimization process, the first meta-interaction (sorted by the singular value during the

SVD process) would correspond to the general contact patterns of all cells within the scHi-

C data. This is consistent with the observation that for all cells, their loadings of the first

meta-interaction (marked as “1st MI” in Fig. 3.3a) are large and similar across all cell types.

For all other meta-interactions, they represent how the cell type-specific 3D genome fea-

tures deviate from the population interaction patterns. To validate this, we aggregated the

cell type-specific meta-interactions weighted by the average single cell loadings and made

comparisons to the differential contact patterns calculated from the bulk Hi-C. Specifically,

we first calculated a “common bulk Hi-C” as the average of the bulk Hi-C of the same

four cell types. Then for each cell type we calculated the differential contact patterns as

the difference between the bulk Hi-C of that cell type and the “common bulk Hi-C”. As

shown in Fig. 3.3b, the differential contact patterns calculated using the bulk Hi-C share

similar patterns to the aggregated cell type-specific meta-interactions. This observation is

consistent with the phenomenon that the Spearman correlations between cell type specific

meta-interactions and the corresponding differential contact map is the highest (Fig. 3.3c).

Next, we analyzed the meta-interactions of a scHi-C dataset on complex tissues, i.e., the

Lee et al. [20] dataset. Fig. 3.3d shows the single cell loadings of the whole genome meta-

interactions for this dataset. We again can observe a clear preference of meta-interaction

sets for different cell types. To confirm that these cell type-specific meta-interactions man-

ifest cell type-specific 3D genome features that are functionally relevant, we calculated the

differential contact values for each bin given a specific set of meta-interactions. We first

aggregated the meta-interactions for a specific cell type by the average single cell loadings,

leading to one meta-interaction map of size N ×N for each chromosome of one cell type.

We then calculated the differential contact values by summing over the column of this meta-

interaction map, representing the overall deviation of a genomic bin from its population-

level pattern. By comparing to the marker genes called from scRNA-seq [119, 120], we
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found that there is a strong positive correlation between the differential contact values and

the expressions of the marker genes (Fig. 3.3e).

These results demonstrate that the meta-interactions from Fast-Higashi effectively cap-

ture the cell type-specific 3D genome features that are relevant to cell type-specific gene

regulation. The meta-interactions from Fast-Higashi can be used to associate the embed-

ding results to a specific region of the scHi-C contact map, pointing to further investigation

of differential 3D chromatin contact patterns of various cell types in complex tissues.

3.3.5 Fast-Higashi unveils single-cell 3D genome features in developing mouse
brain

As discussed above, we applied Fast-Higashi to a scHi-C dataset of developing mouse

brain, i.e., the Tan et al. [19] dataset, and observed local clusters of cells within the two

annotated cell types in the UMAP visualization (Fig. 3.2a). We postulated that these local

clusters could potentially be subtypes not captured by other scHi-C embedding methods

as well as the original data source. To demonstrate that Fast-Higashi can delineate finer

scale cell types and uncover developmental trajectories, we first obtained Fast-Higashi em-

beddings for all cortex cells and annotated the observed small clusters as Interneuron (A),

Interneuron (B), Neonatal Neuron (A), and Neonatal Neuron (B) (Fig. 3.4a).

We sought to confirm our refined cell type labels of neonatal neurons and interneu-

rons (highlighted with circles in Fig. 3.4a) by scA/B values in the gene bodies of marker

genes. The marker genes were obtained from Tan et al. [19], which were calculated using

Seurat [51] on the MALBAC-DT of the developing mouse brain. We quantified the A/B

compartments of a set of differentially expressed genes (DEGs) by the aggregated scA/B

value . Previous studies reported the existence of global correlations between the scA/B

values and the gene expression level within the same cell type [68] and across different

cell types in complex tissues [19, 113]. In particular, genes with higher scA/B values are

more likely to be highly expressed. We found that the aggregated scA/B value of the marker

genes of Pvalb and Sst is significantly higher in Interneuron (B) as compared to Interneuron

(A) and the marker genes of Vip show the opposite trend (Fig. 3.4b). These results suggest
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Figure 3.4: Application of Fast-Higashi to the scHi-C dataset from Tan et al. [19] of the mouse developing brain for
more detailed identification of cell types and developmental trajectories. a. UMAP visualization of the Fast-Higashi
embeddings for the cortex cells in the Tan et al. dataset. Cell subtypes identified by Fast-Higashi are highlighted with
circles and texts. b. Distribution of the scaled aggregated single-cell A/B values for interneuron (A) and interneuron (B)
subtypes identified by Fast-Higashi. For better visualization, the aggregated single-cell A/B values are linearly scaled
to the range from 0 to 1 for each differentially expressed gene (DEG) group. c. Distribution of the scaled aggregated
single-cell A/B values for Neonatal Neuron (A) and Neonatal Neuron (B) subtypes identified by Fast-Higashi. The scaling
is the same as in panel (b). d-e. UMAP visualization of the joint Fast-Higashi embeddings of visual cortex, cortex, and
hippocampus scHi-C datasets in Tan et al [19]. The potential developmental trajectories from neonatal neurons to fully
mature neurons are marked by dashed arrows. Note that here (d) is colored with cell type labels and (e) is colored with
ages of the mouse.

that the DEGs of Pvalb and Sst neurons are expressed at a higher level in Interneuron (B)

than in Interneuron (A) and that the DEGs of Vip neurons exhibit the opposite behavior, in-

dicating that Interneuron (A) and (B) are more likely to be Vip and Pvalb/Sst, respectively.

Similarly, the aggregated scA/B value of the marker genes of neonatal inhibitory neurons

is higher in Neonatal Neuron (A) and the aggregated scA/B value of the marker genes of

neonatal excitatory neurons is higher in Neonatal Neuron (B) (Fig. 3.4c), indicating the

Neonatal Neuron (A) and (B) are neonatal inhibitory neurons and neonatal excitatory neu-

rons, respectively. Meanwhile, the aggregated scA/B values of neonatal excitatory neurons

do not show different distributions (P>0.2) between the Neonatal Neuron 1 and 2 in the

original annotations from Tan et al. [19], confirming that our annotations are indeed a re-

finement. Collectively, we again demonstrate the advantage of Fast-Higashi in identifying
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finer cell types.

To further validate our refined subtype annotation, we jointly embed the cortex and

hippocampus dataset of Tan et al. with another dataset of the visual cortex of developing

mouse brain [19]. The cortex and hippocampus dataset consists of cells from mice at 6

ages: P1, P7, P28, P56, P309, and P347, while the visual cortex dataset includes cells of

mice at ages P7, P14, P21, and P28, which covers the critical development period from

P7 to P28 that was missed in the original dataset. When we applied Fast-Higashi to the

union of these datasets, it recovered the complex developmental trajectories of inhibitory

neurons and excitatory neurons. Specifically, in the UMAP visualization (Fig. 3.4d), a por-

tion of the cells from the visual cortex dataset (light green) connect Neonatal Neuron (A)

(Inhibitory neonatal neurons) to the 3 mature inhibitory neuronal types: Interneuron (A)

(Vip), Interneuron (B) (Pvalb/Sst), and Medium Spiny Neuron. Similarly, a different set of

visual cortex cells connect Neonatal Neuron (B) (Excitatory neonatal neuroins) to the mul-

tiple excitatory neuronal types: Cortical L2-5, Cortical L6, and Hippocampal Pyramidal.

Since the Neonatal Neuron (A) and Neonatal Neuron (B) are primarily composed of P1/7

cells, and the 6 mature neuronal types consist of almost only P28 or older cells, placing

the P14∼28 cells between P1/7 cells and P28+ cells is consistent with the developmental

process. Moreover, along the inferred developmental branches (Fig. 3.4e (curved arrows)),

cells are indeed ordered by the mouse ages, strongly supporting the ability of Fast-Higashi

in recovering trajectory from scHi-C datasets.

In summary, using the Tan et al. [19] dataset, we have demonstrated the clear advantages

of Fast-Higashi in unveiling finer cell types over existing methods as well as the unique

ability of Fast-Higashi to characterize the cell-to-cell variability of 3D genome features

along complex biological processes.
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3.4 Discussion

In this work, we developed Fast-Higashi, an ultrafast and interpretable framework for

scHi-C data analysis. Our generalization from core-PARAFAC2 to Fast-Higashi not only

leverages its strong scalability, but also enables joint and interpretable modeling of meta-

interactions and cell embeddings. The development and incorporation of the Partial RWR

algorithm further improve the performance of Fast-Higashi with negligible impact to the

scalability. Evaluations of Fast-Higashi using a wide range of real scHi-C datasets have

demonstrated its effectiveness and scalability for inferring informative cell embeddings,

enabling the delineation of rare cell types and the reconstruction of developmental trajec-

tories. Besides, as a proof-of-principle, we identified cell type-specific meta-interactions

that are related to cell type-specific gene transcription. Together, we have demonstrated the

effectiveness, scalability, and interpretability of our method Fast-Higashi.

By using its predecessor Higashi [113] as a direct baseline to compare, we demon-

strated the superior scalability of Fast-Higashi to data size, robustness to data quality, and

effectiveness in generating informative cell embeddings that facilitate rare cell type iden-

tification. Moreover, the unique scheme of meta-interactions allows direct analysis of cell

type-specific 3D genome features that correspond to the embedding results. Even though

Fast-Higashi has superior effectiveness and interpretability for scHi-C analysis, we note

that Fast-Higashi is not developed to replace Higashi [113]. For instance, Fast-Higashi uses

a random-walk-with-restart based method for imputing the sparse contact maps, which is

efficient but also has limited imputation power. As demonstrated in Zhang et al. [113],

the accurate imputation empowered by hypergraph representation learning is key to unveil-

ing some important 3D genome features related to cell type-specific gene regulation. On

the other hand, the underlying relationship between the tensor representation and the hyper-

graph representation of scHi-C data makes Fast-Higashi in some way a quasi-linear version

of Higashi and can thus be used to initialize the Higashi model. As a proof-of-principle, we

found that the Fast-Higashi initialized Higashi model can indeed achieve even better perfor-

mance than any of these two methods . As one of the future directions, we plan to integrate
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Fast-Higashi into the Higashi software suite, providing a more flexible and comprehensive

framework for scHi-C analysis.

Fast-Higashi can be further enhanced by incorporating multimodal single-cell omics

data, such as single-cell RNA-seq data and single-cell methylome data. Jointly modeling

of co-assayed scHi-C data and other multimodal data has the potential to further improve

cell embeddings and to establish connections between different modalities. Fast-Higashi

may also be applied to study DNA-RNA interactions in single cells [121].

The continued development of scHi-C related technologies is expected to expand rapidly

in the coming years. Fast-Higashi has the potential to become an essential method in the

toolbox of single-cell 3D epigenomic analysis to greatly enhance the integrative investiga-

tion of 3D genome organization, genome functions, and cellular phenotypes at single-cell

resolution for a wide range of biological applications.
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Chapter 4

GAGE-seq concurrently profiles
multiscale 3D genome organization and
gene expression in single cells

4.1 Introduction

Connecting genotype to phenotype remains a challenge due to the complex principles gov-

erning genome functions. Mammalian genomes are organized within the three-dimensional

(3D) space of the cell nucleus [10], featuring architectural structures across genomic scales,

including chromosome territories [122], A/B compartments [6], subcompartments [6, 7],

topologically associating domains (TADs) [8, 9] and subTADs [123, 124], and chromatin

loops [125, 126]. These structures play critical roles for gene regulation, cellular develop-

ment, and disease progression [1, 11, 12, 127–129]. Single-cell analyses provide unique

insights into these processes, uncovering variability in 3D genome features in individual

cells that bulk analyses might mask [1, 14, 58]. Yet, understanding how changes in mul-

tiscale 3D genome structure within a single cell influence its transcriptional program and

cellular phenotypes remains a major challenge in epigenomics.

Cellular and molecular heterogeneity is pivotal in differentiation and tissue develop-

ment. Advances in single-cell technologies, such as scRNA-seq and single-cell Hi-C (scHi-

C), have deepened our understanding of cellular heterogeneity [130–132] and 3D genome

organization [15, 16, 18, 19, 58–61]. To fully unravel the connections between 3D genome
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organization and transcriptional activity in individual cells, technologies that can concur-

rently measure both in the same cell are needed. Current computational approaches enable

some integration of scHi-C and scRNA-seq [19, 113, 133], revealing connections between

3D genome organization and gene expression at cell-type level. However, such integration

cannot capture the individual cell differences and cell-to-cell variation between structure

and function, as it correlates data from separate cells. While imaging-based methods can

provide simultaneous 3D genome organization and transcriptional activity within the same

cells, they are constrained by low throughput and limited genomic coverage [68, 134–136].

These limitations underscore the need for high-throughput genomic technologies capable

of co-assaying 3D genome and gene expression in the same cell.

Here, we report GAGE-seq (genome architecture and gene expression by sequencing),

a highly scalable and cost-effective method for simultaneously profiling of chromatin in-

teractions and gene expression in single cells. GAGE-seq, thanks to its combinatorial bar-

coding strategy, offers higher methodological throughput, as well as greater efficiency and

effectiveness than recent technologies such as HiRES [137]. We applied GAGE-seq to

profile 9,190 cells across diverse mammalian cell lines and tissues, including mouse brain

and human bone marrow. Specifically, we developed an experimental and analytical frame-

work for elucidating the connections between multiscale 3D genome features and cell type-

specific gene expression, as well as their spatial and temporal interplay.

4.2 Methods

4.2.1 GAGE-seq data processing workflow

Demultiplexing.

DNA and RNA reads were assigned to wells based on the two rounds of barcodes. For

DNA reads, only read 2 was used for demultiplexing, allowing at most 1 mismatch in each

of the two rounds of barcodes. DNA reads with more than 5 mismatches in the region be-

tween the two rounds of barcodes (the 9th-23rd nt) were discarded. After demultiplexing,

the first 12 nt were removed from read 1 and the first 35 nt were removed from read 2.
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For RNA reads, only read 1 was used for demultiplexing, allowing at most 1 mismatch in

each barcode round. RNA reads with more than 6 mismatches in the region between the

two rounds of barcodes (the 19th-48th nt) or with more than 6 mismatches in the region

downstream of the first round of barcode (the 57th-71th nt) were discarded. The two ref-

erence genomes were combined into a single reference genome file used for all GAGE-seq

libraries. For DNA reads, BWA (0.7.17) was used for alignment. The combined reference

genome was indexed using command bwa index -a bwtsw. Paired, trimmed DNA reads

were aligned to the combined reference genome using command bwa mem -SP5M. For

RNA reads, STAR (2.7.8a) was used for alignment. The GENCODE annotation files for

human (v36) and mouse (vM25) were downloaded and concatenated. The combined ref-

erence genome was indexed using command –runMode genomeGenerate –sjdbOverhang

100 with the combined gencode annotation file. Only read 2 of RNA reads was aligned

with the command STAR –outSAMunmapped Within.

Identification of contact pairs from DNA reads.

Pairtools (0.3.1.dev1) was used to identify contact pairs from paired DNA reads with com-

mand pairtools parse –walks-policy all –no-flip –min-mapq=10. After that, walk reads (i.e.,

DNA reads containing multiple ligation sites) were further processed. Briefly, we assumed

that any pair of loci in the same DNA read forms a valid contact pair, and these contact

pairs were included in the results.

Deduplication of contact pairs.

The contact pairs were deduplicated. We extract the genomic positions of the two ends

of each contact pair. We define two contact pairs as directly duplicated if the two contact

pairs’ first ends lie within 500 nt apart and their second ends also within 500 nt. If two

contact pairs are not directly duplicated, but are directly or indirectly duplicated with a

third contact pair, we define the first two contact pairs as indirectly duplicated. Among

each cluster (i.e., connected component) of (in)directly duplicated contact pairs, the one

with the largest difference between its two ends’ genomic positions was retained, and the

rest were marked as duplicates.
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Deduplication of RNA reads.

The RNA reads were deduplicated. Two RNA reads are defined as directly duplicated if

there is at most 1 mismatch in their UMI and if their genomic positions differ by at most 5

nt. The rest of the process is similar to the deduplication of contact pairs. Only one RNA

read from each duplicate cluster is retained.

4.2.2 GAGE-seq integrative analysis for mouse brain cortex.

Integration with MERFISH data.

Integration of GAGE-seq data and MERFISH data was done with Seurat (4.1.1). Only

scRNA-seq profiles from the GAGE-seq data were used for this integration. In the GAGE-

seq mouse brain cortex data, the following cell types of excitatory neurons were used: L2/3

IT CTX a, L2/3 IT CTX b, L2/3 IT CTX c, L4 IT CTX, L4/5 IT CTX, L5 IT CTX, L6

IT CTX, L6 CT CTX a, L6 CT CTX b, L5/6 NP CTX, and L6b CTX. In the MERFISH

data, cells from L2/3 IT, L4/5 IT, L5 IT, L5/6 NP, L6 CT, L6 IT, and L6b were used. Each

time, the selected cells from GAGE-seq were integrated with one slice from the MERFISH

data. All genes detected and expressed in both GAGE-seq and MERFISH were used. The

‘FindIntegrationAnchors’ and ‘IntegrateData’ functions were used with default parameters,

except that the number of dimensions was set to 10.

Inference of whole-transcriptome expression and 3D genome features for MERFISH
cells.

The integrated single-cell expression profiles of GAGE-seq data and MERFISH data were

scaled by the ‘ScaleData’ function from Seurat with default parameters, and the first 30 PCs

were calculated by the ‘RunPCA’ function. A 50-nearest neighbor regressor was created to

estimate whole-transcriptome expression and 3D genome features from the 30-dimensional

PC space. The regressor was trained on GAGE-seq data and then applied to the MERFISH

data. The Gaussian kernel was used as the weight function. For each MERFISH cell, the

bandwidth was defined as the 0.3 quantile of the distances to the 50 nearest neighbors.
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Integration with Paired-seq data.

The integration of GAGE-seq data with Paired-seq data [14] was done using Seurat. Only

scRNA-seq profiles from the GAGE-seq data and the Paired-seq data were used for this

integration. In the GAGE-seq mouse brain cortex data, we excluded three cell types: L2 IT

RvPP, L2/3 IT RSP, and L5 IT RSP. In the Paired-seq data, cells from

BR NonNeu Endothelial, HC ExNeu CA1, HC ExNeu CA23, HC ExNeu DG,

HC ExNeu Subiculum, and HC NonNeu Ependymal were excluded. The ‘SelectIntegra-

tionFeatures’, ‘FindIntegrationAnchors’ and ‘IntegrateData’ functions were used with de-

fault parameters.

Inference of accessibility for GAGE-seq cells.

The integrated single-cell expression profiles of GAGE-seq data and Paired-seq data were

scaled by the ‘ScaleData’ function from Seurat with default parameters. The first 20 PCs

were calculated by the ‘RunPCA’ function. To estimate whole-transcriptome expression

and 3D genome features from the 40-dimensional PC space, we created a 50-nearest neigh-

bor regressor, which was trained on Paired-seq data and then applied to the GAGE-seq data.

The Gaussian kernel was used as the weight function. For each GAGE-seq cell, the band-

width was set based on the 0.3 quantile of the distances to the 40 nearest neighbors.

4.2.3 GAGE-seq integrative analysis for bone marrow

Trajectory and pseudotime.

The pseudotime of human bone marrow cells was inferred by the ‘sc.tl.diffmap’ and ‘sc.tl.dpt’

function in Scanpy (1.9.3), jointly from the paired scRNA-seq profiles and scHi-C profiles.

Specifically, cells in the HSC, MPP, MLP, and B-NK clusters were included. The first 5

PCs of the scRNA-seq profiles were used for the scRNA-based pseudotime and the first 2

PCs of the Fast-Higashi embeddings of the scHi-C profiles were used for the scHi-C-based

pseudotime. The 5 scRNA-seq PCs and the 2 scHi-C PCs were then concatenated and used

for the joint pseudotime. The ‘sc.pp.neighbors’ function was used to construct the neigh-

bor graph with 30 (scRNA-based and joint pseudotime) or 20 (scHi-C-based pseudotime)
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nearest neighbors per cell. The ‘sc.tl.diffmap’ and ‘sc.tl.dpt’ function was applied with 10

diffusion components to learn a latent representation focusing on the trajectory and to infer

the pseudotime for single cells. The origin of the trajectory was set based on the average

expression level of HSC marker genes previously identified [138].

Unsupervised clustering of genes.

The clustering of genes was based on the expression and scA/B value. Genes expressed in

at least 20 cells were included. To generate features for genes, 1) the expression levels and

scA/B values were z-score normalized per gene among all cells. 2) cells were evenly di-

vided into 10 bins based on the pseudotime, and 3) the average values of the expression and

scA/B value in each bin were calculated for each gene. This process led to 20 features for

each gene. The Louvain clustering algorithm was then applied to genes with 20 neighbors,

a resolution of 1.5. The correlation was used as the distance metric.

4.3 Results

4.3.1 Overview of GAGE-seq

GAGE-seq is a high-throughput, effective, and robust single-cell multiomics technology

that simultaneously profiles the 3D genome and transcriptome in individual cells (Fig. 4.1a).

GAGE-seq leverages the highly scalable “combinatorial indexing” paradigm previously

employed in sci-Hi-C [15, 17, 62, 139], as well as other single-cell methods [140–143]

(Fig. 4.1a). The procedure can be summarized as follows: (i) The RNA in cross-linked

and permeabilized cells or nuclei is reverse transcribed (RT) with a biotinylated poly(T)

or random hexamer primer containing DNA sequences, facilitating the ligation of the first-

round barcoded cDNA adaptors; (ii) Cross-linked chromatins are efficiently fragmented

(the first round chromatin fragmentation) using two 4-cut restriction enzymes (RE), CviQI

and MseI, both producing the same adhesive DNA end 5’-TA, enabling the identification of

chromatin interactions via proximity ligation; (iii) After a second round of chromatin frag-

mentation to introduce adhesive DNA ends for ligating the first-round barcoded DNA adap-

tors, cells/nuclei are distributed to a 96-well plate, where the first-round barcodes for DNA
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Figure 4.1: Overview and validation of GAGE-seq. a. Schematic representation of the GAGE-seq workflow detailing
the simultaneous single-cell profiling of 3D genome architecture and gene expression. b-e. Validations demonstrating
the specificity of GAGE-seq using mixed experiments with the human (K562) and mouse (NIH3T3). b and d. Scatter
plots showing the collision level in the GAGE-seq scHi-C (b) and scRNA-seq (d) libraries, and histograms showing the
binomial distribution of reads mapped to hg38 (top) and mm10 (right). c. Scatter plot showing the cis:trans ratio of
scHi-C reads. e. Scatter plot showing the well-separation of scHi-C and scRNA reads of valid cellular indices from that
of empty indices. Mouse is colored in green, human in orange, collisions in red, and empty indices in gray.

or cDNA are introduced through ligation of barcoded adaptors; (iv) Intact cells/nuclei are

then pooled, diluted, and redistributed to a second 96-well plate, where the second-round

barcodes for DNA or cDNA are introduced through ligation; (v) After reverse-crosslinking

to release barcoded nucleic acids, all genomic DNA and cDNA are pooled, and biotinylated

cDNA fragments are separated from genomic DNA with streptavidin beads; (vi) Sequenc-

ing libraries for scHi-C and scRNA-seq are separately generated and sequenced (Meth-

ods); and finally, (vii) Matched scHi-C and scRNA-seq profiles are identified according to

the well-specific barcoding combinations (Fig. 4.1a). This combinatorial cellular indexing

strategy can be further extended to achieve even larger throughput using additional rounds

of ligation-mediated barcoding.
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Figure 4.2: High-quality scHi-C and scRNA-seq data generated by GAGE-seq. a. Pearson’s correlation between the
aggregated scHi-C profiles from GAGE-seq replicates and the bulk in situ Hi-C data3. b. Comparison of aggregated
scRNA-seq profiles of GAGE-seq replicates with NEAT-seq55, SHARE-seq43, and SNARE-seq256. Pearson’s correla-
tion is shown. c. Decay curves of chromatin contact for the GAGE-seq scHi-C libraries. d. Comparison of aggregated
contact maps between two GAGE-seq K562 replicates (upper), and between the combined GAGE-seq K562 library
and an in situ Hi-C library3 (lower). e. Comparison of A/B compartments and TAD-like domain calling at the human
beta-globin locus between GAGE-seq (pseudo bulk) and in situ Hi-C3. f. RNA read distribution across gene bodies in
the GAGE-seq scRNA libraries. g. Aggregated single-cell gene expression profiles at the GAPDH locus. Upper panel:
scRNA-seq signals of GAGE-seq libraries of K562, GM12878, and MDS-L cells (hg38). Lower panel: scRNA-seq signals
of SHARE-seq in GM12878 cells (hg19)43. h. Reproducibility between two biological replicates of GAGE-seq scHi-C
libraries. i. Reproducibility between two biological replicates of GAGE-seq scRNA libraries. r2 statistics are shown. j.
Comparison of GAGE-seq scHi-C library size with published scHi-C and co-assay methods k. Comparison of scRNA-
seq library size (upper) and the number of detected genes (lower) with published co-assay methods.
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4.3.2 Quality validation and benchmarking of GAGE-seq

To assess the quality and specificity of GAGE-seq data, we performed experiments using

a mixture of human (K562) and mouse (NIH3T3) cell lines (Fig. 4.1b-e). Successful sep-

aration of human and mouse reads in both scHi-C and scRNA-seq data was demonstrated,

identifying 683 human and 568 mouse cells out of 1,500 expected, along with 57 doublets

observed in line with the expected 4.4% collision rate (Fig. 4.1b-e). Cells passing stringent

quality criteria exhibited an average of 181,240 (K562, 39.2% duplicate rate) and 206,113

(NIH3T3, 38.0% duplicate rate) chromatin contacts (>1Kb intra-chromosomal) for scHi-

C, as well as an average of 24,784 (K562, 35.7% duplicate rate) and 16,596 (NIH3T3,

31.2% duplicate rate) unique molecular identifiers (UMIs) from 3,699 (K562) and 2,256

(NIH3T3) genes per cell for scRNA-seq (Fig. 4.1). These robust results underscore GAGE-

seq’s ability to concurrently measure single-cell chromatin interactions and transcriptome

with high sensitivity and accuracy. In addition, GAGE-seq’s efficient fragmentation of

crosslinked chromatin before proximity ligation, enabled by two four-cutters (Fig. 4.1a),

allows for efficient detection of multi-way interactions, with >25% of all identified chro-

matin contacts in each scHi-C library.

Validating GAGE-seq in additional cell lines, GM12878 and MDS-L, further confirmed

its robustness, specificity, sensitivity, and reproducibility (Fig. 4.2). Whole-genome and

whole-library level analysis showed GAGE-seq’s chromatin interaction and gene expres-

sion profiles strongly correlating with published datasets (Fig. 4.2a-b). Low collision rate

(Fig. 4.1b), binomial distribution of scHi-C reads (Fig. 4.1b), typical chromatin contact

decay curve (Fig. 4.2c), high cis-trans ratio (Fig. 4.1c), and aggregated pseudobulk and

single-cell chromatin contact maps (Fig. 4.2d), as well as pseudobulk and single-cell A/B

compartment scores and insulation scores (Fig. 4.2e), further confirmed the specificity of

the GAGE-seq scHi-C signals. The specificity of the GAGE-seq scRNA-seq signals was

demonstrated through low collision rate (4.6% in the K562/NIH3T3 library) (Fig. 4.1d),

binomial distribution of RNA reads (Fig. 4.1d), and the fact that the majority of RNA

reads (86%) mapped to the gene body (Fig. 4.2f), complemented by the pseudobulk and
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single-cell RNA signal distribution at individual gene loci (Fig. 4.2g). Notably, similar

to SHARE-seq [144], GAGE-seq scRNA-seq reads were found to be 25%-50% intronic

(Fig. 4.2f), indicating enriched nascent RNA. The high reproducibility across replicates was

demonstrated at multiple levels (Fig. 4.2a,b,d,e,g,h,i), and its methodological resolution (li-

brary complexity) of scHi-C matched existing lower-throughput, unimodal methods, such

as Dip-C [19, 61], as well as sn-m3C-seq [20, 21] (Fig. 4.2j). GAGE-seq scRNA-seq data

quality was also comparable to existing methods (Fig. 4.2k). In line with previous scHi-C

studies [16, 62], GAGE-seq scHi-C data revealed cell cycle stages. Compared to the recent

HiRES method [137], GAGE-seq offers major advantages in throughput, efficiency, and

cost-effectiveness (Fig. 4.2j-k), as well as in resolving rare cell types in complex tissues.

4.3.3 GAGE-seq reveals complex cell types in mouse cortex

To demonstrate the utility of GAGE-seq in unveiling complex cell types based on single-

cell 3D genome features and gene expression within a tissue context, we turned our focus

to the adult mouse brain cortex, known for its cell type diversity. Applying GAGE-seq on

cells from the mouse cortex (8-9 weeks old), we generated 3,296 high-quality joint single-

cell profiles of chromatin interactions and transcriptomes. On average, each cell displayed

231,136 chromatin contacts (at ∼50% duplication rate), with 20,160 UMIs and 1,883 genes

per cell (∼59% duplication rate), in line with the adult mouse whole brain data from the

recently published HiRES data.

Our GAGE-seq scRNA-seq data identified 28 known cell types across three major lin-

eages in the mouse cortex, including 15 excitatory neuron subtypes, 8 inhibitory neuron

subtypes, and 5 glial cell subtypes, such as astrocytes and oligodendrocytes (Fig. 4.3a-

b). These cell identities were confirmed by unique marker gene expressions (Fig. 4.3b).

Notably, GAGE-seq scRNA-seq data enabled the delineation of many rare neuronal sub-

types not identified by HiRES [137], such as L5 PT CTX, Sncg, and Meis2 (Fig. 4.3a-b).

Reanalysis of HiRES mouse brain data with Fast-Higashi [113] further confirmed the su-

perior performance of GAGE-seq in identifying complex cell subtypes, despite a lower

sequencing depth in GAGE-seq. Although 3D genome features are known to encode cell
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Figure 4.3: Cell types in mouse cortex characterized by GAGE-seq scHi-C and scRNA-seq. a and c. UMAP visualization
of mouse cortex scRNA-seq (a) and scHi-C profiles (c) from GAGE-seq. Insets: UMAP visualization of excitatory neuron
subtypes (top) and inhibitory neuron subtypes (bottom). b. Cell type-specific expression (based on scRNA-seq in
GAGE-seq) of known marker genes, including glial types, neuronal types, and neuron subtypes. d. Visualization of cell
type-specific 3D chromatin architecture and gene expression at representative gene loci. Left: aggregated single-cell
insulation score (100-Kb resolution, upper) and gene expression (lower) at the Girk2 locus and the Rbfox1 locus. Right:
aggregated contact maps (50-Kb resolution) of the Girk2 locus (top panel, excitatory vs inhibitory neurons) and the
Rbfox1 locus (low panel, L4 & L4/5 IT CTX vs L2/3 CTX). Cell types selected in the right panels are highlighted by green
lines (higher expression) or red lines (lower expression) in the corresponding left panels. e. UMAP visualization of the
integration of GAGE-seq and a MERFISH dataset [72]. f. Inferred spatial patterns of gene expression and 3D genome
features of L5 IT CTX marker genes. g. In situ plots of inferred single-cell gene expression (left) and scA/B value (right)
for L5 IT CTX marker genes. Layer 3 was highlighted by black arrows in panels (f) and (g). The cell type abbreviations
are based on the naming convention used in [145].
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identity [137, 146], scHi-C often identified fewer cell types in complex tissues than scRNA-

seq [19–21, 147]. Utilizing Fast-Higashi for scHi-C embedding, GAGE-seq distinguished

all 28 transcriptome-defined cell types, including the aforementioned L5 PT CTX, Sncg,

and Meis2 rare subtypes (Fig. 4.3c). The scHi-C-based delineation supports these cell types

with distinct 3D genome features, with insulation scores surrounding gene bodies showing

cell type-specific connection with gene expression (Fig. 4.3d; see later section with more

analysis).

4.3.4 Spatial integration reveals in situ 3D genome variation

Using GAGE-seq to map the 3D genome and transcriptome of single cells, we explored

the in situ variation of the 3D genome in the adult mouse cortex. We leveraged GAGE-seq

scRNA-seq as a “bridge” for this analysis. Recently, the spatial transcriptomics method

MERFISH successfully discerned the spatial organization of distinct cell populations in

the mouse primary motor cortex [72]. We started by integrating our GAGE-seq scRNA-seq

data with the MERFISH data using Seurat, allowing us to establish a connection between

the two datasets (Methods).

We focused on the excitatory neuron cell types present in both GAGE-seq and MER-

FISH datasets. Within the integrated embedding space, cells primarily clustered by cell

type, and cells from both datasets integrated cohesively, indicating high correlation be-

tween cell types identified by the two methods (Fig. 4.3e). We next characterized the in

situ variation of both marker gene expression and 3D genome features of these maker gene

loci in the mouse cortex. As a proof of principle, we investigated the in situ pattern of

marker genes for L5 intratelencephalic (IT) CTX. The observed and inferred gene expres-

sion demonstrated a high degree of congruence, further supporting the reliability of the

integration (Spearman’s r=0.76, two-sided P=0). Layer 5, where L5 IT CTX cells reside,

corresponded with the highest expression level, scA/B value [19], gene body score, and a

low single-cell insulation score (Fig. 4.3f-g), reinforcing the overall correlation between

expression and 3D genome structure. Interestingly, despite consistently low expression

levels and gene body scores in more superficial layers, the scA/B value increased and the
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Figure 4.4: 3D genome features inform cell type-specific gene expressions in the mouse cortex. a. Correlations
between gene expression and 3D genome features across neuron cell types. Upper row: inhibitory (n=508) vs. excitatory
(n=1938). Lower row: Pvalb (n=188) vs. other inhibitory (n=320). Left column: correlation between differential expression
and differential 3D genome feature (Pearson’s correlation coefficients and the P-values from one-sided tests for nonzero
correlations shown). Middle column: volcano plot of differential scA/B value and single-cell insulation score; Right
column: volcano plot of differential expression. P-values from one-sided t-tests with unequal variance are shown in
middle and right columns. b. Single-cell level correlation of gene expression with scA/B value (upper) or insulation
score (lower) in inhibitory neurons (432 genes) and Pvalb (198 genes), respectively (Spearman’s correlation coefficients
and the P-values from one-sided tests for nonzero correlations shown). c. Comparison of A/B compartment (200-Kb
resolution) of the Erbb4 locus between inhibitory and excitatory neurons. Pearson’s correlation matrices of aggregated
contact maps (top) and the A/B compartment scoretracks (bottom) are shown. d. Comparison of the pseudo-bulk
contact map (50-Kb resolution) of the Erbb4 locus between Pvalb and other inhibitory subtypes. Pseudo-bulk contact
maps (upper) and the insulation scores (bottom) are displayed. Two Pvalb-specific strides (white arrow) and melted TAD
(black arrow) are shown in the top panel. The gene body is shown right under the contact matrices in (c) and (d), while the
bottom panels highlight differential 3D genome features with light red boxes. e. Loop example in Pvalb (lower) and Sst
and Meis2 (upper) inhibitory subtypes at 10-Kb resolution. Aggregated contact maps, regulatory element annotations52
(right), and TSS of Erbb4 (bittin arrow) are shown. f. Differential accessibility around the enhancer in Pvalb (left) vs.
Sst and Meis2 (right), with a 1kb enhancer region highlighted (black arrow). The P-values of one-sided Mann-Whitney U
tests are shown. g. Loop vs. non-loop contacts correlation with expression. P-values from two-sided tests for nonzero
Spearman’s correlation coefficients are shown (n=3,105 cells).
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single-cell insulation score decreased slightly around layer 3, a cortical layer containing the

L2/3 IT CTX cells that are not adjacent to the tissue boundary, suggesting potential discrep-

ancies of expression and various 3D genome features at finer spatial resolution (highlighted

by arrows in Fig. 4.3f-g).

4.3.5 Impact of 3D genome on gene expressions in single cells

We next rigorously examined the relationship between gene expression and various multi-

scale 3D genome features in single cells, including A/B compartments, TAD-like domains,

and chromatin loops.

Our analysis of the 3,461 genes expressed in inhibitory neurons (n=508) or excitatory

neurons (n=1,938) revealed a strong correlation between cell type-specific gene expression

and scA/B value, reflecting compartmentalization variations [19, 113] (Fig 4a, top panels).

Inhibitory neurons, for instance, showed a much higher expression for 432 genes which cor-

responded to a higher scA/B value (t-test P=1.1e-46; Fig. 4.4a, top middle panel). Most of

the 391 genes with a higher scA/B value in inhibitory neurons also snowed notably higher

expression levels in these cells compared to excitatory neurons (t-test P=7.5e-26, Fig. 4.4a,

top right panel). Overall, there is a significant correlation between differential gene ex-

pression and differential scA/B value (Pearson’s r=0.38, P¡1e-100, Fig. 4.4a, top left). At

the chromatin domain level, we identified a negative correlation between cell type-specific

gene expression and the associated single-cell insulation score across cell types (Fig. 4.4a,

bottom panels), suggesting that TAD-like domain variations around the gene body are ac-

companied with changes in transcriptional activity of the gene. This phenomenon, aligning

with previous findings at the cell type level [113], may be attributed to domain melting

noted in highly expressed long genes in mouse hippocampus and midbrain neurons47.

We subsequently examined the relationship between single-cell insulation score sur-

rounding the gene body and the potential occurrence of domain melting within our diverse

collection of cell types revealed by GAGE-seq. We focused on the four genes (Grik2,

Dscam, Rbfox1, and Nrxn) known to undergo domain melting [146], profiling their scA/B

value, single-cell insulation score, and single-cell gene expression. Notably, these genes
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manifested high expression across almost all 28 cell subtypes revealed by GAGE-seq, with

the exception of Dscam and Grik2 in VLMC and Micro cells. As expected, Dscam, Rb-

fox1, and Nrxn3 were predominantly in the active A compartment in the majority of cell

subtypes (Fig. 4.3d), while the Grik2 locus was in a weak B compartment across all the

cells, despite its high expression. Aggregated single-cell insulation scores varied across the

gene body, with most cell subtypes showing lower scores correlating with elevated gene ex-

pression (Fig. 4.3d). The aggregated chromatin contact maps indicate potential occurrence

of domain melting around these gene bodies (Fig. 4.3d). A similar phenomenon was also

detected for the Rbfox1 locus across different excitatory neurons (Fig. 4.3d, low panels).

We next further confirmed the above observed connection between multiscale 3D genome

features and gene expression at single cell resolution. Higher gene expression in a cell of-

ten corresponded to a higher scA/B value and lower single-cell insulation score in the same

cell (Fig. 4.4b). For instance, of the 432 genes showing a significantly elevated scA/B value

in inhibitory neurons, most displayed higher expression in these neurons than in excitatory

neurons (Spearman’s r=0.22, P=7.4e-28, n=2446 cells; Fig. 4.4b, top panel). At the chro-

matin domain level, the 198 genes expressed highly in Pvalb cells exhibited notably lower

single-cell insulation scores than in other inhibitory neurons (Spearman’s r=0.45, P=1.5e-

26, n=508 cells; Fig. 4.4b, low panel). Thus, the connection between multiscale 3D genome

features and gene expression is evident at the single-cell resolution.

We then confirmed our observations on single loci. As a proof of principle, we focused

on the Pvalb inhibitory subtype (including both Pvalb a and Pvalb b). We first selected

genes that have 1) significantly higher scA/B values and expression in inhibitory neurons

compared to excitatory neurons (Fig. 4.4a, top panels), and 2) significantly higher expres-

sion and lower single-cell insulation scores in Pvalb compared to other inhibitory neurons

(Fig. 4.4a, bottom panels). This approach led us to the Erbb4 gene. The Erbb4 gene plays

a pivotal role in the central nervous system and has been linked to schizophrenia [148].

As expected, we observed differential A/B compartment states correlated with cell type-

specific expression of the Erbb4 gene (Fig. 4.4c), and differential single-cell insulation
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score that suggests domain melting in the gene locus (Fig. 4.4d, low panel). The TAD-like

domain structure of the Erbb4 gene body in Sst and Meis2 cells appears to be melted in

Pvalb cells (i.e., less pronounced), which is again accompanied with high gene expression

in Pvalb cells (Fig. 4.4d, top panel). Additionally, it appears that the Erbb4 gene body

interacts more frequently with the downstream two small TAD-like domains in Pvalb cells

than in Sst and Meis2 cells (Fig. 4.4d, top panel). On a finer scale, we also observed a

cell type-specific putative enhancer-promoter chromatin loop at the TSS of the Erbb4 gene

in Pvalb cells (Fig. 4.4e-g). Moreover, when integrating with chromatin accessibility, the

putative enhancer region exhibits differential chromatin accessibility that correlates with

the cell type-specific expression of the Erbb4 gene (Fig. 4.4f).

4.3.6 Integrative analysis of GAGE-seq and chromatin accessibility

We next aimed to demonstrate how integrating GAGE-seq with chromatin accessibility data

enhances the connection between CREs and target genes. For this, we integrated GAGE-

seq with Paired-seq data (from the same mouse cortex region) [149]. Overall, genes with

distinct contributions from 3D genome and chromatin accessibility show varied functions

and integrating 3D genome and chromatin accessibility data markedly improves gene ex-

pression prediction accuracy.

Our integrative analysis of GAGE-seq and chromatin accessibility enhances the connec-

tion of CREs to their target genes. The gene expression and transcription start site (TSS)-

CRE interaction frequency correlation decreases with greater genomic distance between

TSS and CRE (Fig. 4.5a). Also, overlaps between Paired-seq-identified gene-CRE pairs

and those identified by other approaches generally decrease with increasing genomic dis-

tance between TSS and CRE. However, refining with GAGE-seq data markedly improved

this overlap, particularly for long-range (>100kb) gene-CRE pairs (Fig. 4.5b), highlighting

the advantage of GAGE-seq in revealing CRE-gene pairs.

We also explored the joint regulation of gene expression by 3D genome and chromatin

accessibility at individual gene loci. A strong correlation was found between Epha4 gene

expression and the chromatin interaction frequency with a distal CRE, as well as between
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Figure 4.5: Integrative analysis of GAGE-seq and chromatin accessibility in the mouse cortex. a. Correlation coefficient
(n=3,105 cells) between expression and TSS-CRE interaction frequency for each gene-CRE pairs from Paired-seq data
, grouped by genomic distance between TSS and CRE. b. Comparison between gene-CRE pairs corroborated by other
sources (red) and those identified only from Paired-seq data63 (yellow). The P-value of two-sided Mann-Whitney U test
is shown. c-e. The combined effect of 3D genome and accessibility on expression at the Epha4 locus. c. Correlation
of interaction-expression for a specific gene-CRE pair at the Epha4 gene, with dots representing single cells colored by
cell type. d. Expression (upper) and TSS-CRE interaction frequency (lower) comparison among excitatory subtypes,
revealing heightened levels in IT and PT subtypes. The P-values of one-sided Mann-Whitney U tests are shown. e.
Accessibility comparison around the TSS and CRE (chr1: 77410959-77411960) of the Epha4 gene among excitatory
subtypes, showing higher accessibility IT and PT subtypes. The P-values of two-sided Mann-Whitney U tests are shown.
IT and PT subtypes are compared against CT, NP, and L6b subtypes in (d) and (e). In panel (e), *: P<1e-3; **: P<1e-5;
***: P<1e-10; the P-values in the upper left plot are (from left to right): 2e-11, 7e-20, 8e-34, 7e-52; the P-values in the
upper right plot are: 6e-4, 6e-8, 7e-6, 2e-6, 1e-4. f. Binding sites of transcription factors Twist2 and Arx at the CRE of
the Epha4 gene, depicting both the canonical motif (top) and the identified binding motif sequence (bottom) for each TF.
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Epha4 gene expression and chromatin accessibility at the TSS and the distal CRE in dif-

ferent excitatory neuron subtypes (Fig. 4.5c-e). Motif analysis of chromatin accessibility

peaks identified potential binding sites for transcription factors Twist2 (Spearman’s P=1e-

289) and Arx (Spearman’s P=2e-132) (Fig. 4.5f). However, no significant differences were

noted for A/B compartment value, insulation score, and gene body score of the Epha4 lo-

cus across neuron subtypes, indicating that fine-scale CRE-chromatin looping instead of

changes in the large-scale 3D features may be responsible for the cell type-specific Epha4

expression.

4.3.7 Developmental stages of human hematopoiesis

Hematopoiesis is a classic model system with well-characterized cell type changes and

their associated gene expression signatures, making it an ideal model for exploring the

dynamic relationship between 3D genome structure and gene expression. We generated

GAGE-seq profiles of 2,815 human bone marrow (BM) CD34+ cells after stringent quality

filtering, obtaining an average of 265,336 chromatin contacts (at 50% duplication rate) and

detecting on average 5,504 UMIs and 985 genes per cell (at 63% duplication rate), which

is in line with the publicly available scRNA-seq datasets. To mitigate the potential impact

of 3D genome’s cell-cycle dynamics [16], we restricted our analysis to high-quality G0/G1

phase cells (837 cells).

Unsupervised clustering of GAGE-seq scRNA-seq data revealed six clusters (five clus-

ters with continuous diffusion and one distinct cluster), each displaying unique gene signa-

tures (Fig. 4.6a-b). Based on the gene expression signatures and known marker genes53,

we annotated these clusters into known cell types: hematopoietic stem cell (HSC), multipo-

tent progenitor (MPP), lymphoid-primed MPP (LMPP), multi-lymphoid progenitor (MLP),

megakaryocyte-erythroid progenitor (MEP), and B lymphocyte natural killer cell progeni-

tors (B-NK) (Fig. 4.6a-b). These clusters, representing all three major blood cell lineages,

showed a lymphoid lineage preference. Our GAGE-seq scHi-C data also successfully re-

solved these six cell types (Fig. 4.6a-b), further demonstrating the ability of the 3D genome

to encode cell type information.
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Figure 4.6: Interplay between 3D genome variation and gene expression changes in human bone marrow differentiation.
a. UMAP visualization of GAGE-seq scRNA-seq (left) and scHi-C profiles (right) of human bone marrow CD34+ cells.
b. Average expression of known marker genes on the UMAP plot. The 6 panels include n=124, 78, 24, 82, 126,
and 356 genes for HSC, MPP, LMPP, MEP, MLP, and B-NK, respectively. c-d. Inferred B-NK lineage trajectory and
pseudotime from scHi-C profiles (c) and jointly from scRNA-seq and scHi-C profiles (d), displayed by cell type (upper)
and pseudotime (lower). e. Cell type compositions across 10 equally divided pseudotime bins. f. UMAP visualization of
gene clusters determined by the temporal trend of expression and scA/B value. g. Temporal trends of gene expression
(upper row), scA/B value (middle row), and single-cell insulation score (lower row) of gene clusters 9 (left column) and
10 (right column). h. scA/B (left) and single-cell insulation score (right) of the JAK1 (upper) and ITPR1 (lower) loci (at
100-Kb resolution). Each row represents a cell, ordered by the joint pseudotime from left to right. Heat maps were
smoothed by a Gaussian kernel with a receptive field of 10 neighboring cells and 1 neighboring bin in each direction. i.
Pseudo-bulk contact maps (at 50-Kb resolution) of HSC and B-NK at the JAK1 (upper) and ITPR1 (lower) loci.
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Focusing on four of the six identified cell types (HSC, MPP, MLP and B-NK), which

represent early B-NK lineage, we used GAGE-seq to reconstruct the developmental trajec-

tory, demonstrating the dynamic interplay between genome structure and gene expression

along this trajectory. Transcriptome and 3D genome-based pseudotime trajectories, in-

ferred from GAGE-seq data, were highly congruent (Fig. 4.6c), suggesting that global 3D

genome temporal variations overall mirror transcriptional changes and differentiation pro-

gression. Further, we created an integrated pseudotime trajectory (Fig. 4.6d, Methods),

which was confirmed by the accurate alignment of the four cell types along the differenti-

ation pseudotime and the observation that earlier-stage progenitors (e.g., HSCs) decrease

while later-stage cells (e.g., B-NK) increase along the pseudotime (Fig. 4.6d-e).

4.3.8 Temporal interplays between 3D genome and gene expression

Comparisons between marker gene expression and 3D genome features in individual cell

types during differentiation pseudotime suggest complex temporal interplay between both

scA/B values and single-cell insulation scores with marker gene expressions.

We then performed an unsupervised clustering to further unravel relationships between

gene expression and 3D genome features in the B-NK differentiation, based on all genes

expressed in at least twenty single cells in the trajectory. We identified 11 distinct gene

clusters (Fig. 4.6f). Notably, 5 of these 11 clusters showed a negative correlation between

the changes in gene expression and scA/B value over pseudotime (Fig. 4.6g left panel). We

closely examined gene cluster 9, where expression increases while scA/B value decreases.

We selected two genes, JAK1 and ITPR1, which exhibit the highest similarity with the

average temporal patterns of this gene cluster. Their scA/B value at the gene bodies indeed

decreases over pseudotime without A/B compartment switches (Fig. 4.6h left panels). This

analysis identified gene groups with varied temporal patterns, including discordant patterns

in expression and scA/B value, as reported previously [19], during differentiation.

Regarding chromatin domains, a uniform temporal trend was observable in the aggre-

gated single-cell insulation scores across all gene clusters, mirroring the pattern seen in

the marker gene sets (Fig. 4.6g), indicating global 3D genome changes, manifested by
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widespread TAD-like domain re-organizations, in B-NK cells. For JAK1 and ITPR1, the

single-cell insulation scores increased abruptly from MLP to B-NK, correlating with gene

expression (Fig. 4.6h right panels), supported by aggregated contact maps (Fig. 4.6i). Addi-

tionally, we found that genes of different sizes appear to have distinct patterns with respect

to single-cell insulation scores.

4.4 Discussion

Our high-throughput multiomic single-cell technology, GAGE-seq, delivers an integrative

approach to co-assay 3D genome structure and gene expression in individual cells with

high resolution. We show that GAGE-seq can reveal complex cell types from complex tis-

sues not identified by other existing methods. Additionally, its data integration with spatial

transcriptomic data points to great potential to reach a deeper understanding of 3D genome

variation within complex tissues. Importantly, GAGE-seq also facilitates the reconstruction

of differentiation trajectories based on 3D genome features, transcriptomes, or both. Our

integration of GAGE-seq with single-cell chromatin accessibility data further highlights

the advantage of GAGE-seq in linking CREs and their target genes. The high congruence

between these modalities underscores the intimate connection between the temporal vari-

ations of the 3D genome and transcriptional rewiring during cell differentiation. Notably,

GAGE-seq has revealed much more nuanced relationships between 3D genome features

and gene expression during bone marrow B-NK lineage differentiation, creating a resource

for future studies to disentangle causal gene regulatory changes in differentiation through

the lens of 3D genome in single cells.

GAGE-seq is characterized by its efficiency, scalability, robustness, cost-effectiveness,

and adaptability. We envision that GAGE-seq, along with our analytical tools, could signif-

icantly enhance the current toolkit for single-cell epigenomics. With wide-ranging applica-

tions, GAGE-seq can deepen our understanding of genome structure and function, provid-

ing insights into normal development and disease pathogenesis. Future refinements, such as

enhancing barcoding strategy for higher throughput and improving detection of chromatin

82



contacts, may allow GAGE-seq to construct high-resolution cell atlases and assess the role

of pathogenic noncoding single-nucleotide variants on chromatin loops [150] in a mas-

sively parallel manner. Additionally, we anticipate a future application where GAGE-seq

will be integrated with spatial labeling technologies, producing spatially-resolved scHi-C

and scRNA-seq data. Such advancements will likely open up new avenues of investigation,

such as exploring the role of the 3D genome in various tissue development and disease

progression. Ultimately, GAGE-seq may offer the opportunity to integrate different molec-

ular features in single cells, leading to a more comprehensive understanding of genome

structure, cellular function, and their spatiotemporal variability.

83



Chapter 5

Hi-CFormer reveals the intricate
interplay of DNA sequence, 3D genome
structure, and transcriptome

5.1 Introduction

The advance of high-throughput whole-genome mapping methods for the three-dimensional

(3D) genome organization such as Hi-C [5] has revealed multi-scale structures of chromatin

folding within the cell nucleus, including A/B compartments [5], subcompartments [6, 7],

topologically associating domains (TADs) [8, 9], and chromatin loops [6]. These structures

play critical roles in gene regulation, cellular development, and disease progression [1, 11–

13, 127–129]. However, the cell-to-cell variation of 3D genome structures and their func-

tional significance remain poorly understood [1, 14]. Recent developments in single-cell

Hi-C (scHi-C) technologies allow us to explore chromatin interactions with unparalleled

detail, ranging from a few cells of specific types [15–18] to thousands of cells from com-

plex tissues [19–21]. Emerging co-assayed technologies enabled the profiling and joint

analysis of multiple modalities of complex tissues at the same time [151]. These emerging

technologies and datasets hold the potential to reveal how genome structure relates to func-

tion in single cells across various biological settings, both in health and disease. These new

technologies and datasets hold the potential to unveil the structure-function connections of

the genome for a wide range of biological contexts in health and disease [14].
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However, computational methods that can effectively utilize Hi-C data to reveal the

roles of DNA sequence and 3D genome structure in transcriptional regulations are signifi-

cantly lacking. Recently, predictive neural networks have been developed to understand the

effect of coding and non-coding DNA sequences on transcriptomes, such as DeepSEA [78],

Basenji2 [152], ExPecto [153], and Enformer [154]. Methodologically, these neural net-

works take a sequence as input and cannot directly incorporate a 2D Hi-C contact map

as part of the input. Conceptually, the DNA sequence, which is the sole input to these

algorithms, is shared for all cells from the same biological context, and these algorithms

generate cell-specific predictions by including cell-specific model parameters. As a result,

these algorithms’ generalizability to unseen cells is far from ideal. Besides, the feature ex-

traction modules (e.g., convolutional layers and transformer layers) are largely shared for

all cells, obscuring the interpretation of the cell-to-cell variability in the model reasoning.

Therefore, new algorithms are urgently needed to fill these important gaps.

Here, we present Hi-CFormer, a new computational method for understanding the in-

tricate interplay of DNA sequence, 3D genome structure, and transcriptome using large

language models. We formulate this goal as predicting mRNA signals from DNA sequence

and 3D genome structure. On a mouse brain dataset, we show that the superior predic-

tive performance of Hi-CFormer over sequence-only baselines. The interpretation of the

trained Hi-CFormer model demonstrates its ability to capture cell-type-specific interaction

among DNA sequence, 3D genome structure, and transcriptome. Hi-CFormer has the po-

tential to shed new light on the functions of DNA sequence and 3D genome structure on

transcriptional regulations.

5.2 Methods

5.2.1 Overview of Hi-CFormer

Hi-CFormer predicts mRNA signals from DNA sequence and 3D genome structure (Fig. 5.1).

Hi-CFormer requires two types of input for each sample: a 409,600 bp-long DNA sequence

and a Hi-C contact map for that genomic region at 1,024-bp resolution (Fig. 5.1a). Hi-
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CFormer predicts the mRNA signals, i.e., the normalized number of transcripts for each

1,024-bp genomic locus. Although the DNA sequence is shared across all cells from the

same biological context, Hi-CFormer learns the variability among cell types from the Hi-C

information. As the entire Hi-CFormer model is shared across all cell types, i.e., there are

no cell-type-specific model parameters, Hi-CFormer is able to generalize to unseen cell

types.

As a proof of principle, we apply Hi-CFormer to pseudo-bulk data at the cell type

level on a GAGE-seq dataset from mouse brains containing 28 cell types and 3740 highly

variable genes [151]. We construct one sample centered at the transcription start site (TSS)

of each highly variable for every cell type, resulting in 104,720 samples in total.

The Hi-CFormer architecture consists of four parts: (1) convolutional blocks with pool-

ing, (2) Hi-C 1D information block, (3) 11 transformer blocks variants incorporating Hi-C

2D information (Fig. 5.1b,c), and (4) a cropping layer followed by final pointwise convo-

lutions.

For the DNA sequence, we employ a one-hot-encoded format, specifically, A=[1, 0, 0,

0], C=[0, 1, 0, 0], G=[0, 0, 1, 0], T=[0, 0, 0, 1], N=[0, 0, 0, 0], with a length of 409,600

bp. Regarding the Hi-C contact map, we have applied feature processing partially based

on prior knowledge, which results in two forms of input: Hi-C 1D signals and Hi-C 2D

contact maps. The Hi-C 1D signals are derived from the Hi-C contact map at 1,024-bp

resolution and include A/B compartment scores, insulation scores, and gene body scores.

The Hi-C 2D contact map is directly taken by a Hi-C 2D contact map in 1024-bp resolu-

tion, so that the shape for the Hi-C 2D input is [400, 400]. For prediction, all the cell-type

specific information in Hi-CFormer is from the cell-type specific Hi-C contact map, and the

final predicted output is of length 240 corresponding to 245,760bp aggregated into 1024-bp

bins. The convolutional blocks take only the DNA sequence as input and then reduce the

genomic dimension from 409,600 bp to 400 so that each DNA position vector represents

1024 bp (although the convolutions do observe nucleotides in the adjacent pooled regions).

Then the Hi-C 1D information block adds the mapped Hi-C 1D vector sequence to the
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DNA position vector sequence and lets the added vector sequence contain Hi-C 1D infor-

mation. The variants of transformer blocks then capture long-range interactions across the

added vector sequence and also incorporating the Hi-C 2D information through the vari-

ants of the attention layer. The cropping layer trims 80 positions on each side following the

setting in Enformer [154] to avoid computing the loss on the far ends because these regions

are disadvantaged because they can observe regulatory elements only on one side (toward

the sequence center) and not the other (the region beyond the sequence boundaries). Fi-

nally, the point-wise convolutions predict a single gene expression value for each 1024-bp

genomic bin. The Hi-C-Former’s architecture is similar to the state-of-the-art model En-

former [154]. However, our novel way of incorporating Hi-C information let our model

can predict gene expression cell-wise or cell-type-wise, incorporate structure information

for better prediction, and generalize to unseen cell/cell types.

5.2.2 Convolutional blocks with pooling

The first 7 convolutional blocks reduce the spatial dimension from 409,600 bp to 3200, and

we use the same architecture with Enformer [154] about these 7 convolutional blocks and

also use their pretrained parameter because their model has seen more DNA sequence struc-

tures and also for computational efficiency. Then we add one attention pooling layer(same

attention pooling architecture in Enformer [154]) on our own to reduce the length from

3200 to 400. Finally, after the convolutional blocks, the shape of the input sample is [400,

c]. c is the value of the hidden dimension. Enformer uses c = 1536 for each DNA posi-

tion vector so that the pretrained convolutional blocks will transform the position vectors

to 1536 hidden dimensions. But we add a transformation layer between the 7 pretrained

convolutional blocks and the attention pooling in order to transform the hidden dimension

to every other numbers.

5.2.3 Hi-C 1D information block

The input of Hi-C 1D data is [400, 5], we first use learnable linear transformation to map

the Hi-C 1D data into c dimension then the mapped data shape is [400, c] and it is the same
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Figure 5.1: Overview of Hi-CFormer. a. The architecture of Hi-CFormer. b. The architecture of our customized variant
of the transformer layer that takes an additional 2D Hi-C contact map as input. The 2D Hi-C contact map together with
the outer product of sequence embedding will be fed into a convolutional neural network and be transformed into the
Hi-C-based attention weight matrix. c. The architecture of our customized varient of the attention layer that takes an
additional 2D matrix that will be added to the dot-product attention map.

with DNA position vector sequence. Then we can add the mapped Hi-C 1D data with DNA

position vector sequence to get a mixed position vector sequence with the shape of [400,

c], the learnable linear transformation can help adjust the space of Hi-C 1D data with the

space of DNA position vectors.

5.2.4 Transformer Block Variant

The input of the Transformer Block is the vector sequence with the shape of [400, c], we

use a similar transformer block architecture with Enformer, and we make some changes in

order to incorporate Hi-C 2D information. The transformer block has two main ways, the
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first way is the same as other transformers, the input vector sequence will be fed into the

multi-head attention layer. The second way is how we incorporate the Hi-C 2D informa-

tion. We first calculate the dot-product of the input sequence vector in order to get some

DNA sequence-wise information, then we append the dot-product matrix with the Hi-C

2D contact map and finally get a tensor with the shape of [400, 400, 2]. Then we apply

three convolution layers to capture the local pattern on that matrix and finally map to a

tensor of shape [400, 400, #number of attention heads], you can view this tensor as another

”attention score” calculated from Hi-C contact map and sequence vector’s dot-product for

each attention head. Then we add this [400, 400, #number of attention heads] tensor to the

attention score calculated by the original attention layer. After that, we can apply softmax

to the new ”attention scores” to calculate the weight and all after this is the same with the

traditional transformer block.

5.2.5 Positional encoding

We use the same positional encoding as Enformer [154] which is first formulated in the

Transformer-XL paper.

5.2.6 Model training

The model uses the same Poisson negative log-likelihood loss function as Enformer [154]

in the training stage. The training/validation/test sets were constructed as follows: the

datasets we use have 3740 genes, each gene is of 409,600bp length, and we divide the total

cell into 28 cell types, each gene in each cell type will be viewed as one sample, so the total

sample number is 28*3740. We select 2992 genes in 22 cell types as the training set, the

748 unseen sequences in 22 seen cell types and the 2992 seen genes in 5 unseen cell types

as the validation set, the 748 unseen genes in 5 unseen cell types as a test set. Therefore,

our test results are showing that how we can generalize our model to unseen sequences and

unseen cell types. We set the Learning rate range to be [1e-4, 5e-5, 1e-5] and the weight

decay range to be [1e-4, 5e-5, 1e-5, 5e-6, 1e-6] and run all the hyperparameter combination

then select the model with best validation set results as the model for analysis.
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5.3 Results

5.3.1 Hi-CFormer accurately predicts expression by utilizing DNA sequence
and 3D genome structure

We sought to demonstrate that Hi-CFormer can effectively utilize 3D genome structure to

predict gene expression. We test our algorithm on a GAGE-seq dataset with co-assayed

scHi-C and scRNA-seq from mouse brains. To train and evaluate Hi-CFormer and other

models, we identified 3740 highly variable genes and calculated the pseudo-bulk mRNA

signals and contact maps for each of the 28 cell types. We selected 2992 genes and 22 cell

types as the training set, and we refer to them as seen genes and seen cell types, respectively.

We refer to the rest of the genes and cell types as unseen genes and unseen cell types,

respectively. We then evaluated the trained models on 3 datasets: 1) a dataset of 2992 seen

genes and 6 unseen cell types, 2) a dataset of 748 unseen genes and 22 seen cell types, and

3) a dataset of 748 unseen genes and 6 unseen cell types. We used Pearson’s correlation

and the mean squared error as evaluation metrics.

Our evaluation shows the consistent and clear advantages of Hi-CFormer over base-

lines. The metric comparison on the training set and 3 validation sets illustrate Hi-CFormer’s

generalizability towards unseen cell types and unseen genes (Fig. 5.2a). Hi-CFormer also

exhibits clear advantages over the sequence-only baseline on unseen cell types and un-

seen genes, demonstrating Hi-CFormer’s effectiveness at utilizing 3D genome structure

(Fig. 5.2a). We also conducted the ablation study assessing the necessity of representing

3D genome structure as both 1D scores (e.g., A/B values, insulation scores, and gene-

body scores) and 2D contact maps. The Hi-CFormer models that only have access to 1D

scores or 2D contact maps are denoted by Hi-CFormer (1D-only) and Hi-CFormer (2D-

only), respectively. The ablation study shows that incorporating both 1D scores and 2D

contact maps together yields optimal performance (Fig. 5.2a). The head-to-head com-

parison between Hi-CFormer and the sequence-only baseline visualizes the advantages of

Hi-CFormer on individual genes (Fig. 5.2b). Specifically, Hi-CFormer outperforms the

sequence-only baseline on a substantial number of genes (the light blue region in Fig. 5.2b).
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A deeper dive into the cell-type-specific predictions shows Hi-CFormer’s consistent advan-

tages on 3 major cell types and all 28 finer cell types (Fig. 5.2 and Fig. [a supplementary

figure]). Together, Hi-CFormer can effectively learn the intricate connection between 3D

genome structure and gene expression.

The prediction performance of Hi-CFormer and the sequence-only baseline is related

to gene functions. Hi-CFormer’s advantages are higher in differentially expressed genes

(DEGs) compared to other genes (Fig. 5.2d), implying the stronger connection between

3D genome structure and expression for DEGs. For the genes where Hi-CFormer and the

sequence-only baseline have comparable performance, we found that genes with more TF

binding sites in the promoter region are generally easier to predict (Fig. 5.2e), suggesting

that the pre-trained CNN module is able to capture the effect of TF binding sites.

Together, evaluation on the GAGE-seq mouse brain dataset demonstrates the superior

performance of Hi-CFormer, implying the important role of 3D genome structure in tran-

scriptional regulation.

5.3.2 Hi-CFormer reveals the interplay between DNA sequence, 3D genome
structure, and gene expression

We then sought to reveal the cell-type-specific interaction between DNA sequence, 3D

genome structure, and transcriptome, by interpreting a trained Hi-CFormer model. Com-

putationally, we quantify the effect of an input feature by the gradient of the predicted

expression signal at the transcription start site (TSS) with respect to that input feature. For

DNA sequence embedding, we take the L-2 norm of the gradient w.r.t. the embedding

vector of each 1,024-bp genomic locus. The L-2 norm is a non-negative scalar and its mag-

nitude represents the importance of that 1,024-bp genomic locus. For 3D genome structural

features, including A/B values, insulation scores, and gene-body scores, the gradient can be

positive and negative, with opposite implications. A positive (negative) gradient suggests

that a larger value of that input feature likely leads to a higher (lower) predicted expression.

A gradient close to zero implies that the input feature does not have a substantial effect on

the predicted expression of that particular gene in a given cell type.
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Figure 5.2: Hi-CFormer outperforms sequence-only baselines. a. Hi-CFormer outperforms the sequence-only baseline
on unseen cell types and unseen genes, showing its superior generalizability. Pearson’s correlation across genomic
bins and cell types is used as the metric. b. Hi-CFormer shows clear and consistent advantages over the sequence-
only baseline on individual genes. Pearson’s correlation across genomic bins and cell types is used as the metric.
c. Hi-CFormer shows clear advantages on major cell types. The mean squared error is used as the metric. d. The
improvement in prediction performance of Hi-CFormer utilizing 3D genome structure information is higher in differentially
expressed genes (DEGs). e. Genes with more transcription factor (TF) binding sites are easier to predict for both Hi-
CFormer and the sequence-based baseline.

The effects of DNA sequences and 3D genome structures on predicted expression ex-

hibit cell-type specificity. We aggregated the gradients over genomic loci and genes for

each cell type. We found that DNA sequence has higher importance in excitatory neurons,

whereas the gene-body score has higher importance in glial types (blue and red rectangles

in Fig. 5.3a). The raw gene-body score has a higher variance in glial types than in neu-

ronal types (Fig. 5.3b), which suggests its higher importance in glial types and supports

our interpretation of Hi-CFormer. The high importance of DNA sequence in excitatory

neurons is supported by two pieces of evidence. First, there are more enhancers in the up-

stream regions in excitatory neurons than in inhibitory neurons and glial cells (Fig. 5.3c).

Second, the aforementioned enhancers contain more transcription factor (TF) bind sites

in excitatory neurons than in inhibitory neurons and glial cells (Fig. 5.3d). Together, we

presented cell-type-specific interplay between DNA sequence, 3D genome structure, and

transcriptome.
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The sequence and 3D genome structure of the gene body and flanking region have dif-

ferent impacts on expression. To quantify the overall impact of sequence and structural

features, we aggregated the gradients over genes (Fig. 5.3e and [a supplementary figure]).

The overall importance of sequence peaks at the transcription start site (TSS) and gradu-

ally decreases as the distance to TSS increases (Fig. 5.3e). In other words, the sequence

of the gene body and the upstream promoter are relatively more important than those of

other regions. The insulation score of the gene body is associated with negative gradi-

ents (Fig. 5.3e), consistent with its negative correlation with expression. Interestingly,

the insulation score of the upstream promoter overall does not have a significant impact

on predicted expression (Fig. 5.3e), suggesting the feature-to-feature variability in tran-

scriptional regulations. A closer inspection of cell-type-specific enhancers shows that the

structural features have a much higher impact on predicted expression, compared to back-

ground (Fig. 5.3f). Hence, Hi-CFormer has the potential to reveal critical transcriptional

regulators.

In summary, we interpreted a trained Hi-CFormer model by taking the gradient of the

predicted expression w.r.t. input features, revealing the complex and cell-type-specific in-

terplay between DNA sequence, 3D genome structure, and transcriptome.

5.4 Discussion

In this work, we developed Hi-CFormer for analyzing the interplay between DNA se-

quence, 3D genome structure, and transcriptome. Our evaluation on a mouse brain dataset

demonstrated the advantages of Hi-CFormer over sequence-only models for predicting cell-

type-specific gene expressions. Additionally, we interpreted the reasoning of Hi-CFormer

in two approaches, based on the gradients w.r.t. input features and the attention weight

matrices, and revealed cell-type-specific transcriptional regulations.

The key conceptual and algorithmic innovation of Hi-CFormer is the incorporation of

3D genome structure into the input. First, the cell-type-specific 3D genome structure as

part of the input enables us to train one Hi-CFormer model that is universal for all cell
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Figure 5.3: Hi-CFormer reveals cell-type-specific interplay between sequence, 3D genome structure, and transcriptome.
a. The gradient of predicted expression with respect to input features in each cell type. The dashed blue rectangle
highlights that sequence features have higher importance in excitatory neurons. The dashed red rectangle highlights
that the gene-body score has higher importance in glial types. b. Gene-body score has a higher variance in glial types
than neuronal types, supporting the importance of gene-body score in glial types. c. The upstream regions of genes
contain more enhancers in excitatory neurons, compared to inhibitory neurons (left) and glial cells (right), supporting the
importance of sequence features in excitatory neurons. d. The enhancers shown in panel (c) contain more transcription
factor (TF) binding sites in excitatory neurons, compared to inhibitory neurons (left) and glial cells (right), supporting the
importance of sequence features in excitatory neurons. e. The impact of sequence features (top) and multi-scale 3D
genome structures (bottom) within and around the gene body on predicted expression. The importance is aggregated
over cell types and genes. f. The structural features of cell-type-specific enhancers in the 100kb upstream regions have
a higher impact on predicted expression.

types, including seen and unseen cell types. Second, the transform of Hi-C contact maps

to attention weights is a novel and effective way to utilize 3D genome structure. Third, al-

though we focused on Hi-C contact maps and the derived 1D scores, our model can include

additional annotations from orthogonal datasets, such as chromatin loops and epigenetic

signals.

Hi-CFormer can be further improved in several directions. First, as a data-driven

method, Hi-CFormer can be improved by being trained on a larger dataset, potentially

including multiple species, larger flanking regions, and single-nucleotide polymorphism.

This may provide additional insights into transcriptional regulations, such as evolutionary
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conserveness, distal regulators, and the effect of mutations. Second, Hi-CFormer can be

extended to predict other genomic tracks, such as DNA methylation and chromatin acces-

sibility, providing a holistic picture of the intricate interplay between multiple omics.
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Chapter 6

Conclusions

In this final chapter, we will first briefly summarize the methods developed in this thesis and

their contributions to this field. We will then outline the future directions for studying the

interplay between 3D genome structure, spatial context, chromosome accessibility, DNA

sequence, and transcriptome, with methods described in this thesis as a foundation. These

future directions include immediate integration of current algorithms, and future directions

to move the field forward involving more advanced methodology development and broader

applications.

6.1 Summary of the methods developed in the thesis

In Chapter 2, we introduce SPICEMIX, an interpretable method based on probabilistic,

latent variable modeling for joint analysis of spatial information and gene expression from

spatial transcriptome data. Both simulation and real data evaluations demonstrate that

SPICEMIX markedly improves the inference of cell types and their spatial patterns com-

pared with existing approaches. By applying to spatial transcriptome data of brain re-

gions in humans and mice acquired by seqFISH+, STARmap, and Visium, we show that

SPICEMIX can enhance the inference of complex cell identities, reveal interpretable spatial

metagenes and uncover differentiation trajectories. SPICEMIX is a generalizable analysis

framework for spatial transcriptome data to investigate the cell-type composition and spa-

tial organization of cells in complex tissues.
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In Chapter 3, we introduce Fast-Higashi, an ultrafast and interpretable method based

on tensor decomposition and partial random walk with restart, enabling joint identifica-

tion of cell identities and chromatin meta-interactions from sparse scHi-C data. Extensive

evaluations demonstrate the advantage of Fast-Higashi over existing methods, leading to

improved delineation of rare cell types and continuous developmental trajectories. Fast-

Higashi can directly identify 3D genome features that define distinct cell types and help

elucidate cell-type-specific connections between genome structure and function. More-

over, Fast-Higashi can generalize to incorporate other single-cell omics data. Fast-Higashi

provides a highly efficient and interpretable scHi-C analysis solution that is applicable to a

broad range of biological contexts.

In Chapter 4, we introduce genome architecture and gene expression by sequencing

(GAGE-seq), a scalable, robust single-cell co-assay measuring 3D genome structure and

transcriptome simultaneously within the same cell. Applied to mouse brain cortex and

human bone marrow CD34+ cells, GAGE-seq characterized the intricate relationships be-

tween 3D genome and gene expression, showing that multiscale 3D genome features in-

form cell-type-specific gene expression and link regulatory elements to target genes. In-

tegration with spatial transcriptomic data revealed in situ 3D genome variations in mouse

cortex. Observations in human hematopoiesis unveiled discordant changes between 3D

genome organization and gene expression, underscoring a complex, temporal interplay at

the single-cell level. GAGE-seq provides a powerful, cost-effective approach for exploring

genome structure and gene expression relationships at the single-cell level across diverse

biological contexts.

In Chapter 5, we introduce Hi-CFormer, a transformer-based predictive model for pre-

dicting mRNA signals from DNA sequence and 3D genome structure, revealing the intri-

cate interplay between DNA sequence, 3D genome structure, and transcriptome. Evalu-

ation on a mouse brain dataset demonstrates the superior predictive performance of Hi-

CFormer. Interpretation of the trained Hi-CFormer model reveals the cell-type-specific

interplay between DNA sequence, 3D genome structure, and transcriptome.
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6.2 Future Work

The integration of advanced genomic technologies such as SpiceMix, FastHigashi, GAGE-

seq, and Hi-CFormer presents transformative opportunities for computational biology, par-

ticularly in drawing a holistic picture of multi-omic and multi-scale intracellular mech-

anisms and cell-to-cell communication. Each of these methodologies offers unique in-

sights into the genomic and epigenomic landscapes of single cells from complex tissues,

promising significant advancements in the study of various complex biological contexts.

Experimentally, the multi-omic data can be efficiently obtained by GAGE-seq and other

co-assayed technologies and further integrated by our developed algorithm. Computation-

ally, the high dimensionality and high sparseness of those data can be effectively addressed

by SpiceMix, FastHigashi, and Hi-CFormer, so that informative and interpretable repre-

sentation can be learned and novel biological insights can be revealed. Below, we briefly

discuss several directions.

6.2.1 Differential SpiceMix

The SpiceMix model introduced in Chapter 2 can be further enhanced for datasets collected

from multiple biological contexts. Recently, advancements in spatial transcriptome tech-

nologies enabled the profiling of millions of cells from various conditions, such as devel-

opment stages and diseases. One algorithmic improvement to SpiceMix for fully utilizing

these emerging data is to incorporate differential model parameters, such as condition-

specific metagenes and spatial affinities. The differential parameters will capture critical

gene programs and spatial patterns related to development and the onset of disease.

6.2.2 Hierarchical SpiceMix for cellular organization

The SpiceMix model can also be adapted to understand subcellular organization and its

relation to phenotypes. Nowadays, state-of-the-art spatial transcriptome technologies have

reached subcellular resolutions. The SpiceMix model can be enhanced to jointly model the

intracellular spatial distribution of mRNA molecules and the intercellular spatial contexts.
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Specifically, we may include two layers of latent nodes: one layer of spots and the other

layer of single cells. Each spot node is associated with a feature vector of observed gene

expression, and we aim to learn latent representations for both spot nodes and cell nodes.

Adjacent spot nodes within a cell are connected and so are adjacent cell nodes, just as

in the SpiceMix model. We also learn the spatial affinities for spot nodes and cell nodes

separately, as well as the connection between each cell node and the spot nodes belonging

to that cell. As a result, the new probabilistic graphical model can reveal the connection

between intracellular mRNA distribution, intercellular interaction, and cellular phenotype.

6.2.3 Multi-modal SpiceMix with heterogeneity nodes representing disease
onsets

The SpiceMix model can be enhanced by incorporating disease-specific signals, such as

the sites of protein misfolding in Alzheimer’s disease. Specifically, we could incorporate

a separate set of nodes that represent the sites of protein misfolding. We would also learn

the spatial affinities between cell nodes and protein-misfolding nodes, aiming to reveal

the cell-type-specific relation between protein-misfolding and cell identity. The enhanced

model might reveal the cell-to-cell variability in the response to protein misfolding.

6.2.4 FastHigashi for co-assayed datasets

The FastHigashi algorithm introduced in Chapter 3 can be extended to co-assayed single-

cell datasets, such as the GAGE-seq datasets and the sn-m3c-seq datasets. FastHigashi can

effectively learn cell embeddings and meta-interactions from multiple chromosomes si-

multaneously. Importantly, the superior performance can be partially attributed to FastHi-

gashi’s mathematic constraints on the meta-interactions that embed our prior knowledge

about chromosome structural properties. The additional co-assayed transcriptome could

be incorporated as an additional matrix, which is connected to cell embeddings through a

linear transformation. The additional co-assayed DNA methylation could be formulated

as an additional column to the scHi-C contact maps. Together, the enhanced FastHigashi

algorithm will be able to learn refined cell embeddings as well as the connection between
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multiple profiled modalities and cell phenotype.

6.2.5 Combination of SpiceMix and FastHigashi for spatial scHi-C data

The SpiceMix algorithm and the FastHigashi algorithm can be combined to study the spa-

tial pattern of 3D genome structure. Specifically, we could 1) keep the formation of the

spatial affinity between latent cell nodes and 2) replace the NMF connection between em-

bedding and transcriptome in SpiceMix with the decomposition used in FastHigashi. Since

high-quality spatial scHi-C datasets are not widely available yet, we could use the inte-

grated datasets produced by our integration algorithm in Chapter 4. This combined algo-

rithm is expected to retain the advantages of both SpiceMix and FastHigashi - to effectively

learn informative cell embeddings and meta-interactions from high-dimensional and highly

sparse scHi-C contact maps, while utilizing spatial information.

6.2.6 Integrative multi-omic analyses

Integrating multi-model data from technologies like GAGE-seq allows for comprehensive

multi-omic analyses at the single-cell level. This approach could elucidate how changes at

the genomic level (detected by GAGE-seq and other single-cell technologies) influence 3D

genome structure (analyzed by FastHigashi), transcriptome (inferred by Hi-CFormer), and

spatial patterns (learned by SpiceMix), and vice versa. For example, researchers could track

the effects of DNA damage and repair mechanisms on gene expression and 3D genome

structure in cancer cells, leading to insights into tumor evolution and metastasis. This

holistic view could also help identify biomarkers for early disease detection or targets for

precision therapies, enhancing personalized medicine strategies.

6.2.7 Enhanced diagnostic tools

The detailed molecular insights provided by these technologies can be leveraged to develop

more precise diagnostic tools. For instance, patterns of 3D genome structure and DNA

damage unique to specific diseases or stages of diseases, as identified through Hi-CFormer

and GAGE-seq, could be integrated into diagnostic criteria. Additionally, changes in spa-
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tial gene expression patterns identified by SpiceMix could help in classifying subtypes of

diseases more accurately. These advanced diagnostics could facilitate earlier detection and

more tailored treatment plans, significantly improving patient prognosis.
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[82] Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-Philippe Morency. Multimodal ma-

chine learning: A survey and taxonomy. IEEE transactions on pattern analysis and

machine intelligence, 41(2):423–443, 2018.

[83] Yuhan Hao, Stephanie Hao, Erica Andersen-Nissen, William M Mauck, Shiwei

Zheng, Andrew Butler, Maddie J Lee, Aaron J Wilk, Charlotte Darby, Michael Za-

ger, et al. Integrated analysis of multimodal single-cell data. Cell, 184(13):3573–

3587, 2021.

[84] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and

techniques. MIT press, 2009.

[85] Lawrence R Rabiner. A tutorial on hidden markov models and selected applications

in speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

[86] Rasmus Bro. Parafac. tutorial and applications. Chemometrics and Intelligent Lab-

oratory Systems, 38(2):149–171, 1997.

[87] Daniel D Lee and H Sebastian Seung. Learning the parts of objects by non-negative

matrix factorization. nature, 401(6755):788–791, 1999.

[88] Daniel D Lee and H Sebastian Seung. Algorithms for non-negative matrix factor-

ization. In Advances in Neural Information Processing Systems, pages 556–562,

2001.

[89] Jean-Philippe Brunet, Pablo Tamayo, Todd R Golub, and Jill P Mesirov. Metagenes

and molecular pattern discovery using matrix factorization. Proceedings of the Na-

tional Academy of Sciences, 101(12):4164–4169, 2004.

112



[90] Yongyue Zhang, Michael Brady, and Stephen Smith. Segmentation of brain

MR images through a hidden Markov random field model and the expectation-

maximization algorithm. IEEE Transactions on Medical Imaging, 20(1):45–57,

2001.

[91] Kevin Murphy. Machine learning: a probabilistic perspective. MIT Press, 2012.

[92] Julian Besag. On the statistical analysis of dirty pictures. Journal of the Royal

Statistical Society: Series B (Methodological), 48(3):259–279, 1986.

[93] LLC Gurobi Optimization. Gurobi optimizer reference manual, 2020. URL http:

//www.gurobi.com.

[94] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[95] Bosiljka Tasic, Vilas Menon, Thuc Nghi Nguyen, Tae Kyung Kim, Tim Jarsky,

Zizhen Yao, Boaz Levi, Lucas T Gray, Staci A Sorensen, Tim Dolbeare, Darren

Bertagnolli, Jeff Goldy, Nadiya Shapovalova, Sheana Parry, Changkyu Lee, Kim-

berly Smith, Amy Bernard, Linda Madisen, Susan M Sunkin, Michael Hawrylycz,

Christof Koch, and Hongkui Zeng. Adult mouse cortical cell taxonomy revealed by

single cell transcriptomics. Nature Neuroscience, 19(2):335–346, 2016.

[96] Ed S Lein, Michael J Hawrylycz, Nancy Ao, Mikael Ayres, Amy Bensinger, Amy

Bernard, Andrew F Boe, Mark S Boguski, Kevin S Brockway, Emi J Byrnes, et al.

Genome-wide atlas of gene expression in the adult mouse brain. Nature, 445(7124):

168–176, 2007.

[97] Tianyi Sun, Dongyuan Song, Wei Vivian Li, and Jingyi Jessica Li. scdesign2: a

transparent simulator that generates high-fidelity single-cell gene expression count

data with gene correlations captured. Genome Biology, 22(1):1–37, 2021.

[98] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.

Journal of Machine Learning Research, 12:2825–2830, 2011.

113

http://www.gurobi.com
http://www.gurobi.com
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Romanov, Daniel Gyllborg, Ana B Muñoz-Manchado, Gioele La Manno, Peter
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